Download presentation
Presentation is loading. Please wait.
Published byArwed Fischer Modified over 6 years ago
1
Crystallography H. K. D. H. Bhadeshia Introduction and point groups
Stereographic projections Low symmetry systems Space groups Deformation and texture Interfaces, orientation relationships Martensitic transformations
2
Introduction
3
Form
4
Anisotropy Ag Mo
5
Polycrystals
6
The Lattice
23
Centre of symmetry and inversion
26
Bravais Lattices Triclinic P Monoclinic P & C Orthorhombic P, C, I & F
Tetragonal P & I Hexagonal Trigonal P Cubic P, F & I
27
Bravais Lattices
28
2D lattices
29
Crystal Structure 1/2 1/2 1/2 1/2
31
lattice + motif = structure
primitive cubic lattice motif = Cu at 0,0,0 Zn at 1/2, 1/2, 1/2
32
Lattice: face-centred cubic Motif: C at 0,0,0 C at 1/4,1/4,1/4
3/4 1/4 3/4 1/4 3/4 1/4 3/4 1/4 Lattice: face-centred cubic Motif: C at 0,0,0 C at 1/4,1/4,1/4
34
3/4 1/4 1/4 3/4
35
Lattice: face-centred cubic Motif: Zn at 0,0,0 S at 1/4,1/4,1/4
3/4 1/4 1/4 3/4 Lattice: face-centred cubic Motif: Zn at 0,0,0 S at 1/4,1/4,1/4
38
fluorite
41
Point groups 2m
42
Water and sulphur tetrafluoride have same point symmetry and hence same number of vibration modes - similar spectra
43
Gypsum 2/m
44
Epsomite 222
45
2/m
46
mm2
47
4/m mm or 4/mmm
49
If a direction [uvw] lies in a plane (hkl) then uh+vk+wl = 0
Weiss Law If a direction [uvw] lies in a plane (hkl) then uh+vk+wl = 0 [uvw] (hkl)
50
[110] (110) x y z y x z
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.