Download presentation
Presentation is loading. Please wait.
1
Computer and Robot Vision I
Chapter 5 Mathematical Morphology Presented by: 傅楸善 & 董子嘉 指導教授: 傅楸善 博士 Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
2
5.1 Introduction mathematical morphology works on shape
shape: prime carrier of information in machine vision morphological operations: simplify image data, preserve essential shape characteristics, eliminate irrelevancies shape: correlates directly with decomposition of object, object features, object surface defects, assembly defects DC & CV Lab. CSIE NTU
3
5.2 Binary Morphology set theory: language of binary mathematical morphology sets in mathematical morphology: represent shapes Euclidean N-space: EN discrete Euclidean N-space: ZN N=2: hexagonal grid, square grid DC & CV Lab. CSIE NTU
4
5.2 Binary Morphology (cont’)
dilation, erosion: primary morphological operations opening, closing: composed from dilation, erosion opening, closing: related to shape representation, decomposition, primitive extraction DC & CV Lab. CSIE NTU
5
5.2.1 Binary Dilation dilation: combines two sets by vector addition of set elements dilation of A by B: addition commutative dilation commutative: binary dilation: Minkowski addition DC & CV Lab. CSIE NTU
6
5.2.1 Binary Dilation (cont’)
DC & CV Lab. CSIE NTU
7
5.2.1 Binary Dilation (cont’)
A: referred as set, image B: structuring element: kernel dilation by disk: isotropic swelling or expansion DC & CV Lab. CSIE NTU
8
5.2.1 Binary Dilation (cont’)
DC & CV Lab. CSIE NTU
9
5.2.1 Binary Dilation (cont’)
dilation by kernel without origin: might not have common pixels with A translation of dilation: always can contain A DC & CV Lab. CSIE NTU
10
5.2.1 Binary Dilation (cont’)
=lena.bin.128= DC & CV Lab. CSIE NTU
11
5.2.1 Binary Dilation (cont’)
=lena.bin.dil= By structuring element : DC & CV Lab. CSIE NTU
12
5.2.1 Binary Dilation (cont’)
N4: set of four 4-neighbors of (0,0) but not (0,0,) 4-isolated pixels removed only points in I with at least one of its 4-neighbors remain At: translation of A by the point t DC & CV Lab. CSIE NTU
13
5.2.1 Binary Dilation (cont’)
dilation: union of translates of kernel addition associative dilation associative associativity of dilation: chain rule: iterative rule dilation of translated kernel: translation of dilation DC & CV Lab. CSIE NTU
14
5.2.1 Binary Dilation (cont’)
dilation distributes over union dilating by union of two sets: the union of the dilation DC & CV Lab. CSIE NTU
15
5.2.1 Binary Dilation (cont’)
dilating A by kernel with origin guaranteed to contain A extensive: operators whose output contains input dilation extensive when kernel contains origin dilation preserves order increasing: preserves order DC & CV Lab. CSIE NTU
16
5.2.2 Binary Erosion erosion: morphological dual of dilation
erosion of A by B: set of all x s.t. erosion: shrink: reduce: DC & CV Lab. CSIE NTU
17
5.2.2 Binary Erosion (cont’)
DC & CV Lab. CSIE NTU
18
5.2.2 Binary Erosion (cont’)
=lena.bin.128= DC & CV Lab. CSIE NTU
19
5.2.2 Binary Erosion (cont’)
=Lena.bin.ero= DC & CV Lab. CSIE NTU
20
5.2.2 Binary Erosion (cont’)
erosion of A by B: set of all x for which B translated to x contained in A if B translated to x contained in A then x in A B erosion: difference of elements a and b DC & CV Lab. CSIE NTU
21
5.2.2 Binary Erosion (cont’)
dilation: union of translates erosion: intersection of negative translates DC & CV Lab. CSIE NTU
22
5.2.2 Binary Erosion (cont’)
DC & CV Lab. CSIE NTU
23
5.2.2 Binary Erosion (cont’)
Minkowski subtraction: close relative to erosion Minkowski subtraction: erosion: shrinking of the original image antiextensive: operated set contained in the original set erosion antiextensive: if origin contained in kernel DC & CV Lab. CSIE NTU
24
5.2.2 Binary Erosion (cont’)
if then because eroding A by kernel without origin can have nothing in common with A DC & CV Lab. CSIE NTU
25
5.2.2 Binary Erosion (cont’)
DC & CV Lab. CSIE NTU
26
5.2.2 Binary Erosion (cont’)
dilating translated set results in a translated dilation eroding by translated kernel results in negatively translated erosion dilation, erosion: increasing DC & CV Lab. CSIE NTU
27
5.2.2 Binary Erosion (cont’)
eroding by larger kernel produces smaller result Dilation, erosion similar that one does to foreground, the other to background similarity: duality dual: negation of one equals to the other on negated variables DeMorgan’s law: duality between set union and intersection DC & CV Lab. CSIE NTU
28
5.2.2 Binary Erosion (cont’)
negation of a set: complement negation of a set in two possible ways in morphology logical sense: set complement geometric sense: reflection: reversing of set orientation DC & CV Lab. CSIE NTU
29
5.2.2 Binary Erosion (cont’)
complement of erosion: dilation of the complement by reflection Theorem 5.1: Erosion Dilation Duality DC & CV Lab. CSIE NTU
30
5.2.2 Binary Erosion (cont’)
DC & CV Lab. CSIE NTU
31
5.2.2 Binary Erosion (cont’)
Corollary 5.1: erosion of intersection of two sets: intersection of erosions DC & CV Lab. CSIE NTU
32
5.2.2 Binary Erosion (cont’)
DC & CV Lab. CSIE NTU
33
5.2.2 Binary Erosion (cont’)
erosion of a kernel of union of two sets: intersection of erosions erosion of kernel of intersection of two sets: contains union of erosions no stronger DC & CV Lab. CSIE NTU
34
DC & CV Lab. CSIE NTU
35
5.2.2 Binary Erosion (cont’)
chain rule for erosion holds when kernel decomposable through dilation duality does not imply cancellation on morphological equalities containment relationship holds DC & CV Lab. CSIE NTU
36
5.2.2 Binary Erosion (cont’)
genus g(I): number of connected components minus number of holes of I, 4-connected for object, 8-connected for background 8-connected for object, 4-connected for background DC & CV Lab. CSIE NTU
37
5.2.2 Binary Erosion (cont’)
DC & CV Lab. CSIE NTU
38
5.2.2 Binary Erosion (cont’)
DC & CV Lab. CSIE NTU
39
Joke DC & CV Lab. CSIE NTU
40
5.2.3 Hit-and-Miss Transform
hit-and-miss: selects corner points, isolated points, border points hit-and-miss: performs template matching, thinning, thickening, centering hit-and-miss: intersection of erosions J,K kernels satisfy hit-and-miss of set A by (J,K) hit-and-miss: to find upper right-hand corner DC & CV Lab. CSIE NTU
41
5.2.3 Hit-and-Miss Transform (cont’)
DC & CV Lab. CSIE NTU
42
DC & CV Lab. CSIE NTU
43
5.2.3 Hit-and-Miss Transform (cont’)
J locates all pixels with south, west neighbors of A K locates all pixels of Ac with south, west neighbors in Ac J and K displaced from one another Hit-and-miss: locate particular spatial patterns DC & CV Lab. CSIE NTU
44
5.2.3 Hit-and-Miss Transform (cont’)
hit-and-miss: to compute genus of a binary image DC & CV Lab. CSIE NTU
45
5.2.3 Hit-and-Miss Transform (cont’)
DC & CV Lab. CSIE NTU
46
5.2.3 Hit-and-Miss Transform (cont’)
hit-and-miss: thickening and thinning hit-and-miss: counting hit-and-miss: template matching DC & CV Lab. CSIE NTU
47
5.2.4 Dilation and Erosion Summary
DC & CV Lab. CSIE NTU
48
5.2.4 Dilation and Erosion Summary (cont’)
DC & CV Lab. CSIE NTU
49
5.2.5 Opening and Closing dilation and erosion: usually employed in pairs B K: opening of image B by kernel K B K: closing of image B by kernel K B open under K: B open w.r.t. K: B= B K B close under K: B close w.r.t. K: B= B K DC & CV Lab. CSIE NTU
50
5.2.5 Opening and Closing (cont’)
=lena.bin.128= DC & CV Lab. CSIE NTU
51
5.2.5 Opening and Closing (cont’)
=lena.bin.open= DC & CV Lab. CSIE NTU
52
5.2.5 Opening and Closing (cont’)
morphological opening, closing: no relation to topologically open, closed sets opening characterization theorem A K: selects points covered by some translation of K, entirely contained in A DC & CV Lab. CSIE NTU
53
5.2.5 Opening and Closing (cont’)
opening with disk kernel: smoothes contours, breaks narrow isthmuses opening with disk kernel: eliminates small islands, sharp peaks, capes closing by disk kernel: smoothes contours, fuses narrow breaks, long, thin gulfs closing with disk kernel: eliminates small holes, fill gaps on the contours DC & CV Lab. CSIE NTU
54
5.2.5 Opening and Closing (cont’)
=lena.bin.128= DC & CV Lab. CSIE NTU
55
5.2.5 Opening and Closing (cont’)
=lena.bin.close= DC & CV Lab. CSIE NTU
56
5.2.5 Opening and Closing (cont’)
unlike erosion and dilation: opening invariant to kernel translation opening antiextensive like erosion and dilation: opening increasing DC & CV Lab. CSIE NTU
57
5.2.5 Opening and Closing (cont’)
A K: those pixels covered by sweeping kernel all over inside of A F: shape with body and handle L: small disk structuring element with radius just larger than handle width extraction of the body and handle by opening and taking the residue DC & CV Lab. CSIE NTU
58
5.2.5 Opening and Closing (cont’)
DC & CV Lab. CSIE NTU
59
5.2.5 Opening and Closing (cont’)
DC & CV Lab. CSIE NTU
60
5.2.5 Opening and Closing (cont’)
extraction of trunk and arms with vertical and horizontal kernels DC & CV Lab. CSIE NTU
61
DC & CV Lab. CSIE NTU
62
5.2.5 Opening and Closing (cont’)
DC & CV Lab. CSIE NTU
63
5.2.5 Opening and Closing (cont’)
extraction of base, trunk, horizontal and vertical areas DC & CV Lab. CSIE NTU
64
5.2.5 Opening and Closing (cont’)
DC & CV Lab. CSIE NTU
65
5.2.5 Opening and Closing (cont’)
noisy background line segment removal DC & CV Lab. CSIE NTU
66
DC & CV Lab. CSIE NTU
67
5.2.5 Opening and Closing (cont’)
DC & CV Lab. CSIE NTU
68
DC & CV Lab. CSIE NTU
69
5.2.5 Opening and Closing (cont’)
DC & CV Lab. CSIE NTU
70
5.2.5 Opening and Closing (cont’)
decomposition into parts DC & CV Lab. CSIE NTU
71
5.2.5 Opening and Closing (cont’)
closing: dual of opening like opening: closing invariant to kernel translation closing extensive like dilation, erosion, opening: closing increasing DC & CV Lab. CSIE NTU
72
5.2.5 Opening and Closing (cont’)
opening idempotent closing idempotent if L K not necessarily follows that DC & CV Lab. CSIE NTU
73
5.2.5 Opening and Closing (cont’)
DC & CV Lab. CSIE NTU
74
5.2.5 Opening and Closing (cont’)
DC & CV Lab. CSIE NTU
75
5.2.5 Opening and Closing (cont’)
DC & CV Lab. CSIE NTU
76
5.2.5 Opening and Closing (cont’)
closing may be used to detect spatial clusters of points DC & CV Lab. CSIE NTU
77
Joke DC & CV Lab. CSIE NTU
78
5.2.6 Morphological Shape Feature Extraction
morphological pattern spectrum: shape-size histogram [Maragos 1987] DC & CV Lab. CSIE NTU
79
5.2.7 Fast Dilations and Erosions
decompose kernels to make dilations and erosions fast DC & CV Lab. CSIE NTU
80
5.3 Connectivity morphology and connectivity: close relation
DC & CV Lab. CSIE NTU
81
5.3.1 Separation Relation S separation if and only if S symmetric, exclusive, hereditary, extensive DC & CV Lab. CSIE NTU
82
5.3.2 Morphological Noise Cleaning and Connectivity
images perturbed by noise can be morphologically filtered to remove some noise DC & CV Lab. CSIE NTU
83
5.3.3 Openings, Holes, and Connectivity
opening can create holes in a connected set that is being opened DC & CV Lab. CSIE NTU
84
5.3.4 Conditional Dilation select connected components of image that have nonempty erosion conditional dilation J defined iteratively J0 = J J are points in the regions we want to select conditional dilation J =Jm where m is the smallest index Jm=Jm-1 DC & CV Lab. CSIE NTU
85
DC & CV Lab. CSIE NTU
86
5.4 Generalized Openings and Closings
generalized opening: any increasing, antiextensive, idempotent operation generalized closing: any increasing, extensive, idempotent operation DC & CV Lab. CSIE NTU
87
Joke End DC & CV Lab. CSIE NTU
88
5.5 Gray Scale Morphology binary dilation, erosion, opening, closing naturally extended to gray scale extension: uses min or max operation gray scale dilation: surface of dilation of umbra gray scale dilation: maximum and a set of addition operations gray scale erosion: minimum and a set of subtraction operations DC & CV Lab. CSIE NTU
89
5.5.1 Gray Scale Dilation and Erosion
top: top surface of A: denoted by umbra of f: denoted by DC & CV Lab. CSIE NTU
90
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
91
5.5.1 Gray Scale Dilation and Erosion (cont’)
gray scale dilation: surface of dilation of umbras dilation of f by k: denoted by DC & CV Lab. CSIE NTU
92
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
93
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
94
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
95
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
96
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
97
DC & CV Lab. CSIE NTU
98
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
99
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
100
5.5.1 Gray Scale Dilation and Erosion (cont’)
gray scale erosion: surface of binary erosions of one umbra by the other umbra DC & CV Lab. CSIE NTU
101
5.5.1 Gray Scale Dilation and Erosion (cont’)
=lena.im= DC & CV Lab. CSIE NTU
102
5.5.1 Gray Scale Dilation and Erosion (cont’)
=lena.im.dil= DC & CV Lab. CSIE NTU
103
5.5.1 Gray Scale Dilation and Erosion (cont’)
Structuring Elements: Octagon Value = 0 * DC & CV Lab. CSIE NTU
104
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
105
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
106
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
107
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
108
5.5.1Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
109
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
110
5.5.1 Gray Scale Dilation and Erosion (cont’)
=lena.im= DC & CV Lab. CSIE NTU
111
5.5.1 Gray Scale Dilation and Erosion (cont’)
=lena.im.ero= DC & CV Lab. CSIE NTU
112
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
113
5.5.1 Gray Scale Dilation and Erosion (cont’)
DC & CV Lab. CSIE NTU
114
5.5.2 Umbra Homomorphism Theorems
surface and umbra operations: inverses of each other, in a certain sense surface operation: left inverse of umbra operation DC & CV Lab. CSIE NTU
115
5.5.2 Umbra Homomorphism Theorems
Proposition 5.1 Proposition 5.2 Proposition 5.3 DC & CV Lab. CSIE NTU
116
5.5.3 Gray Scale Opening and Closing
gray scale opening of f by kernel k denoted by f k gray scale closing of f by kernel k denoted by f k DC & CV Lab. CSIE NTU
117
5.5.3 Gray Scale Opening and Closing (cont’)
=lena.im.open= DC & CV Lab. CSIE NTU
118
5.5.3 Gray Scale Opening and Closing (cont’)
=lena.im.close= DC & CV Lab. CSIE NTU
119
5.5.3 Gray Scale Opening and Closing (cont’)
duality of gray scale dilation, erosion duality of opening, closing DC & CV Lab. CSIE NTU
120
5.5.3 Gray Scale Opening and Closing (cont’)
DC & CV Lab. CSIE NTU
121
joke DC & CV Lab. CSIE NTU
122
5.6 Openings, Closings, and Medians
median filter: most common nonlinear noise-smoothing filter median filter: for each pixel, the new value is the median of a window median filter: robust to outlier pixel values, leaves sharp edges median root images: images remain unchanged after median filter DC & CV Lab. CSIE NTU
123
Original Image Median Root Image
124
5.7 Bounding Second Derivatives
opening or closing a gray scale image simplifies the image complexity DC & CV Lab. CSIE NTU
125
5.8 Distance Transform and Recursive Morphology
DC & CV Lab. CSIE NTU
126
5.8 Distance Transform and Recursive Morphology (cont’)
Fig 5.39 (b) fire burns from outside but burns only down-ward and right-ward DC & CV Lab. CSIE NTU
127
5.9 Generalized Distance Transform
DC & CV Lab. CSIE NTU
128
5.10 Medial Axis medial axis transform: medial axis with distance function DC & CV Lab. CSIE NTU
129
5.10.1 Medial Axis and Morphological Skeleton
morphological skeleton of a set A by kernel K, where DC & CV Lab. CSIE NTU
130
5.10.1 Medial Axis and Morphological Skeleton (cont’)
DC & CV Lab. CSIE NTU
131
5.10.1 Medial Axis and Morphological Skeleton (cont’)
DC & CV Lab. CSIE NTU
132
5.10.1 Medial Axis and Morphological Skeleton (cont’)
DC & CV Lab. CSIE NTU
133
5.11 Morphological Sampling Theorem
Before sets are sampled for morphological processing, they must be morphologically simplified by an opening or a closing. Such sampled sets can be reconstructed in two ways: by either a closing or a dilation. DC & CV Lab. CSIE NTU
134
=========== Joke===========
DC & CV Lab. CSIE NTU
135
5.12 Summary morphological operations: shape extraction, noise cleaning, thickening morphological operations: thinning, skeletonizing DC & CV Lab. CSIE NTU
136
Homework Write programs which do binary morphological dilation, erosion, opening, closing, and hit-and-miss transform on a binary image (Due Nov. 1) Write programs which do gray-scale morphological dilation, erosion, opening, and closing on a gray-scale image (Due Nov. 15) DC & CV Lab. CSIE NTU
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.