Download presentation
Presentation is loading. Please wait.
1
Physics 321 Hour 29 Principal Axes
2
Bottom Line We can write πΏ =π π where π is the inertia tensor:
π= πΌ π₯π₯ πΌ π₯π¦ πΌ π₯π§ πΌ π₯π¦ πΌ π¦π¦ πΌ π¦π§ πΌ π₯π§ πΌ π¦π§ πΌ π§π§ = π½ π¦π¦ + π½ π§π§ β π½ π₯π¦ β π½ π₯π§ βπ½ π₯π¦ π½ π§π§ + π½ π₯π₯ β π½ π¦π§ βπ½ π₯π§ βπ½ π¦π§ π½ π₯π₯ + π½ π¦π¦ π½ π₯π¦ = π₯π¦πππ Things are simpler with βprincipal axesβ: π= πΌβ² π₯π₯ πΌβ² π¦π¦ πΌβ² π§π§ To do this we solve the eigenvalue problem. BA.C-CA.B
3
The Inertia Tensor of a Point Mass
πΏ =π π π= π( π 2 β π₯ 2 ) βππ₯π¦ βππ₯π§ βππ¦π₯ π( π 2 β π¦ 2 ) βππ¦π§ βππ§π₯ βππ§π¦ π( π 2 β π§ 2 )
4
The Inertia Tensor of an Extended Object
πΏ =π π π½ π₯π¦ = π₯π¦πππ π= πΌ π₯π₯ πΌ π₯π¦ πΌ π₯π§ πΌ π₯π¦ πΌ π¦π¦ πΌ π¦π§ πΌ π₯π§ πΌ π¦π§ πΌ π§π§ = π½ π¦π¦ + π½ π§π§ β π½ π₯π¦ β π½ π₯π§ βπ½ π₯π¦ π½ π§π§ + π½ π₯π₯ β π½ π¦π§ βπ½ π₯π§ βπ½ π¦π§ π½ π₯π₯ + π½ π¦π¦ π= 1 2 π βπβ π
5
Example Lamina π= π½ π¦π¦ β π½ π₯π¦ 0 βπ½ π₯π¦ π½ π₯π₯ 0 0 0 π½ π₯π₯ + π½ π¦π¦
π= π½ π¦π¦ β π½ π₯π¦ 0 βπ½ π₯π¦ π½ π₯π₯ π½ π₯π₯ + π½ π¦π¦ π½ π₯π¦ = π₯π¦πππ΄
6
Example Lamina a π½ π₯π₯ = π π π 0 π π₯ 2 ππ₯ππ¦ = π π 2 π 4 3 = 1 3 π π 2 = π½ π¦π¦ π½ π₯π¦ = π π π 0 π π₯π¦ππ₯ππ¦ = π π 2 π 4 4 = 1 4 π π 2
7
Example Lamina a a π= π½ π¦π¦ β π½ π₯π¦ 0 βπ½ π₯π¦ π½ π₯π₯ π½ π₯π₯ + π½ π¦π¦ = 1/3π π 2 β1/4π π 2 0 β1/4π π 2 1/3π π /3π π 2 = π π β3 0 β
8
Diagonalizing the Inertia Tensor
πΏ =π π What if πβ²= πΌβ² π₯π₯ πΌβ² π¦π¦ πΌβ² π§π§ ? πΏ β² = πΌβ² π₯π₯ π π₯ πΌβ² π¦π¦ π π¦ πΌβ² π§π§ π π§ π= 1 2 πΌβ² π₯π₯ π π₯ πΌβ² π¦π¦ π π¦ πΌβ² π§π§ πβ² π§ 2 Furthermore, if π β² = πβ² π₯ 0 0 πΏβ² = πΌβ² π₯π₯ π β² π= 1 2 πΌβ² π₯π₯ πβ² π₯ 2
9
Diagonalizing the Inertia Tensor
Find the eigenvalues: det πβΞ»π =0 For each Ξ», find the eigenvectors: πΌ π =Ξ» π The three eigenvectors define the βprincipalβ axes. Weβll usually let Mathematica do that for us, but you should be able to diagonalize a lamina π by hand.
10
Example π= π π β3 0 β 4βΞ»β² β3 0 β3 4βΞ»β² βΞ»β² =0 8βΞ»β²=0 or 4βΞ»β² 2 β9=0 Ξ»β²=8 ππ 4βΞ»β²=3 ππ 4βΞ»β²=β3
11
Principal axis 1: π§ axis with πΌ 11 = 2π π 2 3
Example π= π π β3 0 β For Ξ» β² = Ξ»= 8π π = 2π π 2 3 4 β3 0 β π π π =8 π π π 4πβ3π 4πβ3π 8π =8 π π π β4πβ3π=0 β4πβ3π=0 8π=8π π π π = Principal axis 1: π§ axis with πΌ 11 = 2π π 2 3
12
Principal axis 2: 1 2 π₯ + π¦ axis with πΌ 22 = π π 2 12
Example a For Ξ» β² = Ξ»= π π 2 12 4 β3 0 β π π π = π π π 4πβ3π 4πβ3π 8π = π π π πβ3π=0 3πβ3π=0 8π=π π π π = Principal axis 2: π₯ + π¦ axis with πΌ 22 = π π 2 12
13
Principal axis 2: 1 2 π₯ β π¦ axis with πΌ 33 = 7π π 2 12
Example a For Ξ» β² = Ξ»= 7π π 2 12 4 β3 0 β π π π =7 π π π 4πβ3π 4πβ3π 8π =7 π π π β3πβ3π=0 β3πβ3π=0 8π=π π π π = β 1 1 0 Principal axis 2: π₯ β π¦ axis with πΌ 33 = 7π π 2 12
14
Examples principal axes.nb
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.