Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physics 321 Hour 29 Principal Axes.

Similar presentations


Presentation on theme: "Physics 321 Hour 29 Principal Axes."β€” Presentation transcript:

1 Physics 321 Hour 29 Principal Axes

2 Bottom Line We can write 𝐿 =𝐈 πœ” where 𝐈 is the inertia tensor:
𝐈= 𝐼 π‘₯π‘₯ 𝐼 π‘₯𝑦 𝐼 π‘₯𝑧 𝐼 π‘₯𝑦 𝐼 𝑦𝑦 𝐼 𝑦𝑧 𝐼 π‘₯𝑧 𝐼 𝑦𝑧 𝐼 𝑧𝑧 = 𝐽 𝑦𝑦 + 𝐽 𝑧𝑧 βˆ’ 𝐽 π‘₯𝑦 βˆ’ 𝐽 π‘₯𝑧 βˆ’π½ π‘₯𝑦 𝐽 𝑧𝑧 + 𝐽 π‘₯π‘₯ βˆ’ 𝐽 𝑦𝑧 βˆ’π½ π‘₯𝑧 βˆ’π½ 𝑦𝑧 𝐽 π‘₯π‘₯ + 𝐽 𝑦𝑦 𝐽 π‘₯𝑦 = π‘₯π‘¦πœŒπ‘‘π‘‰ Things are simpler with β€œprincipal axes”: 𝐈= 𝐼′ π‘₯π‘₯ 𝐼′ 𝑦𝑦 𝐼′ 𝑧𝑧 To do this we solve the eigenvalue problem. BA.C-CA.B

3 The Inertia Tensor of a Point Mass
𝐿 =𝐈 πœ” 𝐈= π‘š( π‘Ÿ 2 βˆ’ π‘₯ 2 ) βˆ’π‘šπ‘₯𝑦 βˆ’π‘šπ‘₯𝑧 βˆ’π‘šπ‘¦π‘₯ π‘š( π‘Ÿ 2 βˆ’ 𝑦 2 ) βˆ’π‘šπ‘¦π‘§ βˆ’π‘šπ‘§π‘₯ βˆ’π‘šπ‘§π‘¦ π‘š( π‘Ÿ 2 βˆ’ 𝑧 2 )

4 The Inertia Tensor of an Extended Object
𝐿 =𝐈 πœ” 𝐽 π‘₯𝑦 = π‘₯π‘¦πœŒπ‘‘π‘‰ 𝐈= 𝐼 π‘₯π‘₯ 𝐼 π‘₯𝑦 𝐼 π‘₯𝑧 𝐼 π‘₯𝑦 𝐼 𝑦𝑦 𝐼 𝑦𝑧 𝐼 π‘₯𝑧 𝐼 𝑦𝑧 𝐼 𝑧𝑧 = 𝐽 𝑦𝑦 + 𝐽 𝑧𝑧 βˆ’ 𝐽 π‘₯𝑦 βˆ’ 𝐽 π‘₯𝑧 βˆ’π½ π‘₯𝑦 𝐽 𝑧𝑧 + 𝐽 π‘₯π‘₯ βˆ’ 𝐽 𝑦𝑧 βˆ’π½ π‘₯𝑧 βˆ’π½ 𝑦𝑧 𝐽 π‘₯π‘₯ + 𝐽 𝑦𝑦 𝑇= 1 2 πœ” βˆ™πˆβˆ™ πœ”

5 Example Lamina 𝐈= 𝐽 𝑦𝑦 βˆ’ 𝐽 π‘₯𝑦 0 βˆ’π½ π‘₯𝑦 𝐽 π‘₯π‘₯ 0 0 0 𝐽 π‘₯π‘₯ + 𝐽 𝑦𝑦
𝐈= 𝐽 𝑦𝑦 βˆ’ 𝐽 π‘₯𝑦 0 βˆ’π½ π‘₯𝑦 𝐽 π‘₯π‘₯ 𝐽 π‘₯π‘₯ + 𝐽 𝑦𝑦 𝐽 π‘₯𝑦 = π‘₯π‘¦πœŽπ‘‘π΄

6 Example Lamina a 𝐽 π‘₯π‘₯ = π‘š π‘Ž π‘Ž 0 π‘Ž π‘₯ 2 𝑑π‘₯𝑑𝑦 = π‘š π‘Ž 2 π‘Ž 4 3 = 1 3 π‘š π‘Ž 2 = 𝐽 𝑦𝑦 𝐽 π‘₯𝑦 = π‘š π‘Ž π‘Ž 0 π‘Ž π‘₯𝑦𝑑π‘₯𝑑𝑦 = π‘š π‘Ž 2 π‘Ž 4 4 = 1 4 π‘š π‘Ž 2

7 Example Lamina a a 𝐈= 𝐽 𝑦𝑦 βˆ’ 𝐽 π‘₯𝑦 0 βˆ’π½ π‘₯𝑦 𝐽 π‘₯π‘₯ 𝐽 π‘₯π‘₯ + 𝐽 𝑦𝑦 = 1/3π‘š π‘Ž 2 βˆ’1/4π‘š π‘Ž 2 0 βˆ’1/4π‘š π‘Ž 2 1/3π‘š π‘Ž /3π‘š π‘Ž 2 = π‘š π‘Ž βˆ’3 0 βˆ’

8 Diagonalizing the Inertia Tensor
𝐿 =𝐈 πœ” What if πˆβ€²= 𝐼′ π‘₯π‘₯ 𝐼′ 𝑦𝑦 𝐼′ 𝑧𝑧 ? 𝐿 β€² = 𝐼′ π‘₯π‘₯ πœ” π‘₯ 𝐼′ 𝑦𝑦 πœ” 𝑦 𝐼′ 𝑧𝑧 πœ” 𝑧 𝑇= 1 2 𝐼′ π‘₯π‘₯ πœ” π‘₯ 𝐼′ 𝑦𝑦 πœ” 𝑦 𝐼′ 𝑧𝑧 πœ”β€² 𝑧 2 Furthermore, if πœ” β€² = πœ”β€² π‘₯ 0 0 𝐿′ = 𝐼′ π‘₯π‘₯ πœ” β€² 𝑇= 1 2 𝐼′ π‘₯π‘₯ πœ”β€² π‘₯ 2

9 Diagonalizing the Inertia Tensor
Find the eigenvalues: det πˆβˆ’Ξ»πŸ =0 For each Ξ», find the eigenvectors: 𝐼 πœ” =Ξ» πœ” The three eigenvectors define the β€œprincipal” axes. We’ll usually let Mathematica do that for us, but you should be able to diagonalize a lamina 𝐈 by hand.

10 Example 𝐈= π‘š π‘Ž βˆ’3 0 βˆ’ 4βˆ’Ξ»β€² βˆ’3 0 βˆ’3 4βˆ’Ξ»β€² βˆ’Ξ»β€² =0 8βˆ’Ξ»β€²=0 or 4βˆ’Ξ»β€² 2 βˆ’9=0 Ξ»β€²=8 π‘œπ‘Ÿ 4βˆ’Ξ»β€²=3 π‘œπ‘Ÿ 4βˆ’Ξ»β€²=βˆ’3

11 Principal axis 1: 𝑧 axis with 𝐼 11 = 2π‘š π‘Ž 2 3
Example 𝐈= π‘š π‘Ž βˆ’3 0 βˆ’ For Ξ» β€² = Ξ»= 8π‘š π‘Ž = 2π‘š π‘Ž 2 3 4 βˆ’3 0 βˆ’ π‘Ž 𝑏 𝑐 =8 π‘Ž 𝑏 𝑐 4π‘Žβˆ’3𝑏 4π‘βˆ’3π‘Ž 8𝑐 =8 π‘Ž 𝑏 𝑐 βˆ’4π‘Žβˆ’3𝑏=0 βˆ’4π‘βˆ’3π‘Ž=0 8𝑐=8𝑐 π‘Ž 𝑏 𝑐 = Principal axis 1: 𝑧 axis with 𝐼 11 = 2π‘š π‘Ž 2 3

12 Principal axis 2: 1 2 π‘₯ + 𝑦 axis with 𝐼 22 = π‘š π‘Ž 2 12
Example a For Ξ» β€² = Ξ»= π‘š π‘Ž 2 12 4 βˆ’3 0 βˆ’ π‘Ž 𝑏 𝑐 = π‘Ž 𝑏 𝑐 4π‘Žβˆ’3𝑏 4π‘βˆ’3π‘Ž 8𝑐 = π‘Ž 𝑏 𝑐 π‘Žβˆ’3𝑏=0 3π‘βˆ’3π‘Ž=0 8𝑐=𝑐 π‘Ž 𝑏 𝑐 = Principal axis 2: π‘₯ + 𝑦 axis with 𝐼 22 = π‘š π‘Ž 2 12

13 Principal axis 2: 1 2 π‘₯ βˆ’ 𝑦 axis with 𝐼 33 = 7π‘š π‘Ž 2 12
Example a For Ξ» β€² = Ξ»= 7π‘š π‘Ž 2 12 4 βˆ’3 0 βˆ’ π‘Ž 𝑏 𝑐 =7 π‘Ž 𝑏 𝑐 4π‘Žβˆ’3𝑏 4π‘βˆ’3π‘Ž 8𝑐 =7 π‘Ž 𝑏 𝑐 βˆ’3π‘Žβˆ’3𝑏=0 βˆ’3π‘βˆ’3π‘Ž=0 8𝑐=𝑐 π‘Ž 𝑏 𝑐 = βˆ’ 1 1 0 Principal axis 2: π‘₯ βˆ’ 𝑦 axis with 𝐼 33 = 7π‘š π‘Ž 2 12

14 Examples principal axes.nb


Download ppt "Physics 321 Hour 29 Principal Axes."

Similar presentations


Ads by Google