Download presentation
Presentation is loading. Please wait.
1
Search for R-parity Violation at DØ
on behalf of the DØ collaboration Frédéric Déliot CEA-Saclay, France
2
Search for R-parity Violation at DØ
introduction the TeVatron and the DØ experiment R-parity violation pair production + R̸p LSP decay dilepton signal via ’ trilepton signal via top decays via ’ or ’’ sparticule resonant production resonant slepton production resonant stop production : new results included 11/06/01 SUSY'01 - F. Déliot
3
integrated luminosity
The TeVatron Run duration center of mass energy integrated luminosity RunI 1.8 TeV ~ 0.13 fb-1 RunIIa 2.TeV 2 fb-1 RunIIb 15 fb-1 CDF DØ MI Tevatron RunII: 2 new accelerators: (3.3 km ring) Main injector (injector to the TeVatron, p̅ production) recycler (p̅ recycling ring) 11/06/01 SUSY'01 - F. Déliot
4
Forward mini- drift chambers
The DØ Detector muon chambers toroid tracking system calorimeter Central scintillators Forward scintillators Shielding Solenoid, Tracking system Forward mini- drift chambers DØ upgrade for RunII: new tracking system (Si tracker, fiber tracker) central solenoid preshower new forward muon system DØ in RunI: central detector (drift chambers, transition radiation detector) no central magnetic field compact and hermetic Ar-U calorimeter muon system with iron toroid
5
R-parity discrete quantum number:
R = (-1)3B+L+2S, B: baryon nb, L: lepton nb, S spin R = +1 for SM particle R = -1 for SUSY particule R parity violation terms compatible with all superpotential symmetries: WR̸p=ijkLiLjEck+ ’ijkLiQjDck + ’’ijkUciDcjDck 45 new Yukawa couplings can not be excluded theoretically L̸ B̸ 11/06/01 SUSY'01 - F. Déliot
6
R-parity Violation experimental consequences of R̸p :
B and/or L violation LSP can decay with or without displaced vertices sparticules can be produced resonantly usual search hypothesis: mSUGRA with ̃01 as LSP and R̸p similarly to Yukawa couplings hierarchy, only one R̸p coupling dominates if R̸p coupling large enough, resonant production otherwise pair production + R̸p does not affect branching ratios except for LSP decay 11/06/01 SUSY'01 - F. Déliot
7
Limits on R-parity Violation Couplings
Dreiner, hep-ph/ Ledroit, Sajot, GDR-S-008 indirect limits via low energy processes (assuming a single dominant R̸p): neutrinoless double-beta decay charged-current universality constraints e-- universality -e scattering AFB atomic parity violation 2 limits for m̃ = 100GeV ijk ijk ijk ʹijk ijk ʹijk ijk ʺijk * * * *
8
Pair Production: Dielectron Channel
DØ, PRL 83 (99) 4476 All pair production processes considered dominant coupling: one of the six ’1jk (j=1,2; k=1,2,3) LSP decay to 1 electron and 2 jets (close to its production) channel: 2 electrons + 4 jets background: Drell Yann, tt̅, Zee+…, misidentification of jets as electrons q ~ e 1o q’ ’ RunI Results: Lint= 99 4.4 pb-1 Events observed: 2 Expected Bkg: 1.8 0.2 0.3 e ~ q 1o q’ ’ 11/06/01 SUSY'01 - F. Déliot
9
’1jk : Dielectron Channel in Run I
A0=0, < 0, tan = 2 A0=0, < 0, tan = 6 11/06/01 SUSY'01 - F. Déliot
10
Dielectron Channel in RunII
A0=0, < 0, tan = 2 Lint= 2 fb-1 , s̅=2 TeV Scenario I: extrapolation from RunI Scenario II: electrons misidentification reduced by a factor 2 due to central magnetic field Mg̃ 500 GeV Mq̃ 400 GeV 11/06/01 SUSY'01 - F. Déliot
11
Pair Production: Dimuon Channel
DØ, preliminary All pair production processes considered dominant coupling: same analysis as previously with a dominant ’2jk channel: 2 muons + 4 jets background: Drell Yann, tt̅, Z+jets, Z, WW q ~ 1o q’ ’2jk Run I Results: Lint= 4 pb-1 Events observed: 0 Expected Bkg: 0.18 0.02 ~ q 1o q’ ’2jk 11/06/01 SUSY'01 - F. Déliot
12
’2jk : Dimuon Channel RunI RunII, 2 fb-1 A0=0, < 0, tan = 2
11/06/01 SUSY'01 - F. Déliot
13
Pair Production: Multilepton Channel
DØ, PRL 80 (98) 1592 dominant coupling: 121 ,122 or 233 LSP decay to 2 charged leptons and a neutrino channel: reinterpretation of search for ̃1 ̃20 production 4 different final states: eee, ee, e, + E̸t background: Drell Yann, tt̅, Zee+…, misidentification of jets as electrons e ~ e 1o 121 Run I Results: eee ee e Lint 97.8 5.2 93.1 4.9 78.3 4.1 Obs evts Bkg 0.34 0.07 0.61 0.36 0.11 0.04 0.20 0.04 ~ 1o 233
14
ijk : Multilepton Channel in Run I
dLSP >1 cm dLSP <1 cm dLSP <1 cm 11/06/01 SUSY'01 - F. Déliot
15
Top Decay via R̸p dominant coupling: ’’331
Abraham et al., PRD 63 (01) 34011 dominant coupling: ’’331 pp tt̅ with one t bd̃01 (̃01 decays outside the detector) and t̅ Wb̅ lb̅ channel: 1 lepton, 3 jets with 2 b-tagged + E̸t background: tt̅, Wbbj Sbottom Mass (GeV) 5.00 2.00 1.00 0.50 0.20 0.10 0.05 ’’331 b̅ 1o ~ d̅ b̃ t RunII: s̅=2 TeV, Lint = 2 fb-1 d̅ 1o ~ b̅ d̃ t
16
Top Decay via R̸p dominant coupling: ’333
Han et al., PLB 476 (00) 79 dominant coupling: ’333 pp tt̅ with one t b̃01 (̃01 decays in or outside the detector) channel: same signal as H+ b: detection optimized for SM tt̅ analysis disappearance experiment background: tt̅, W+jets t ̃ b 1o ~ t̃1 t b 1o ~ b̃ t b long lived LSP Indirect 2 limit for m̃ = 100 GeV: ’333 =0.58 for M̃ = 70 GeV, ’333 < 0.94 at 95 % CL RunII (2fb-1): ’333 < 0.38
17
Resonant Production at hadronic colliders, resonant production via ’ or ’’ via ’: resonant slepton production (̃,̃) via ’’: resonant squark production (t̃) generally assumed that those sparticles decay via Rp conserved couplings cascade to LSP which decays into the detector or outside the detector depending on the dominant coupling considered 11/06/01 SUSY'01 - F. Déliot
18
Resonant Slepton Production
Déliot et al., EPJ C 19 (01) 155 dominant coupling: ’ chargino or neutralino singly produced 4 possible channels: (̃) in pb ’211=0.09, < 0, tan = 2 (̃) in pb m0 m0 M2 M2
19
Resonant Production: Dimuon Channel
DØ, preliminary dominant coupling: ’211 resonant ̃ or ̃ production channel: 2 muons + 2 jets background: tt̅, Z+2jets, WW+jets p 1o ~ L _ 1o ~ u d 1- ~ l - l W - 1o d 1- ~ + _ Run I Results: Lint= 94 5 pb-1 Events observed: 5 Expected Bkg: 5.34 0.07 1o ~ u d 11/06/01 SUSY'01 - F. Déliot
20
Resonant ’211 : Dimuon Channel in Run I
A0=0, < 0, tan = 2 s̅=1.8 TeV Exclusion contours at 95% CL down to ’211 =0.07 and m0 200 GeV m1/2 220 GeV Indirect 2 limit for m̃ = 100 GeV: ’211 =0.06 11/06/01 SUSY'01 - F. Déliot
21
Resonant ’211 in RunII: Trilepton Channel
Déliot et al., EPJ C 19 (01) 155 search for trilepton channel via resonant sneutrino production s̅=2 TeV, A0=0, < 0, tan = 1.5 11/06/01 SUSY'01 - F. Déliot
22
RunII Trilepton Channel: Mass Reconstruction
allow mass reconstructions: simulation: M̃01=77.7 GeV, M̃+1=158.3 GeV, M̃=236 GeV 2 jets and softer muon: M̃01=71 GeV (9) Lint = 10fb-1 ’211 = 0.09 11/06/01 SUSY'01 - F. Déliot
23
Resonant ’211 in RunII: Dimuon Channel
search for dimuon channel via resonant smuon production Lint = 2fb-1, ’211 =0.05 A0=0, < 0, tan = 1.5 Lint = 10fb-1 ’211 =0.05 11/06/01 SUSY'01 - F. Déliot
24
Resonant Squark Production
Berger et al., PRD 63 (01) dominant coupling: ’’3jk resonant stop production, decay to: b ̃+1 and ̃01 decays outside the detector channel: 1 b-tagged jet, 1 e or 1 + E̸t background: Wc, Wj with c or j that mimics a b, Wbb̅, Wcc̅, single top via Wg 1+ ~ l l W 1o d 1+ ~ b t s 11/06/01 SUSY'01 - F. Déliot
25
Resonant ’’3jk in Run I for Mt̃ = 255 GeV,
s̅=1.8 TeV, Lint = 110pb-1 for Mt̃ = 255 GeV, ’’312 < 0.08 at 95 % CL Indirect 2 limit for m̃ = 100 GeV: ’’312 =0.50 11/06/01 SUSY'01 - F. Déliot
26
Resonant ’’3jk in RunII
s̅=2 TeV, Lint = 2 fb-1 11/06/01 SUSY'01 - F. Déliot
27
Conclusion DØ searches for R-parity violation in RunI:
large number of R̸p couplings explored No sign of R̸p SUSY found DØ RunII will provide a wide range of improved coupling limits and a great discovery potential: 20 more luminosity (2003) 10% more energy improved detectors large increase on R̸p coupling and mass sensitivity 11/06/01 SUSY'01 - F. Déliot
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.