Presentation is loading. Please wait.

Presentation is loading. Please wait.

Some considerations on LUCAS

Similar presentations


Presentation on theme: "Some considerations on LUCAS"— Presentation transcript:

1 Some considerations on 2009-2012LUCAS
By Mauro Masselli

2 topics The reference population The sample design Estimator
Data “projection” Other quality indicators

3 In the framework of the grant support by Eurostat we proposed two methods to integrate LUCAS statistics in national statistical framework The first method is LUCAS based and looks to improving LUCAS accuracy by making LUCAS consistent/coherent with other national official statistics The second approach looks to replace LUCAS with sources and statistics more reliable than LUCAS and available in the national system Both methods use auxiliary variables recorded on some cartographic layers rasterized to 20x20 mt Lucas integration. Luxembourg

4 The reference population
In 2009 and the second phase sample is selected from subpopulations identified by restrictions of master sample; so the estimates should be referred to the corresponding areas…. while the estimates are produced for the whole area of participating country

5 The reference population
The reference population is defined by Eligibility rules Accessibility rules Ex ante criteria - missing units ? In field missing units

6 2015 Master country number of points <1500 mt
total percentage of points > 1500 mt AT 16629 4350 20979 20,7 BE 7682 . BG 26718 1023 27741 3,7 CY 2305 6 2311 0,3 CZ 19717 1 19718 DE 89357 144 89501 0,2 DK 10825 EE 11354 EL 32100 945 33045 2,9 ES 120239 4374 124613 3,5 FI 84542 FR 133140 4166 137306 3,0 HU 23271 IE 17557 IT 69157 6178 75335 8,2 LT 16334 LU 646 LV 16145 MT 80 NL 8864 PL 78125 16 78141 PT 22242 19 22261 0,1 RO 58623 987 59610 1,7 SE 112371 123 112494 SI 4938 129 5067 2,5 SK 12164 99 12263 0,8 UK 62008 22560 2,1 2015 Master

7 2012 sample country number of NUTS_2 with points >1500
number of points >1500 average points > per Nuts_2 AT 7 4350 621 BE . BG 5 1023 205 CY 1 6 CZ DE 2 144 72 DK EE EL 9 945 105 ES 14 4374 312 FI FR 4166 595 HU IE IT 20 6178 309 LT LU LV MT NL PL 16 PT 19 RO 987 141 SE 123 62 SI 129 65 SK 99 50 UK total 81 22560 279 2012 sample

8 2012 Land cover: ratio between estimates related to the population <1500 mt and the estimates for the whole population; percentages of LC in the whole population

9 estimates for the whole population
 ratio = estimates for the population <1500/ estimates for the whole population Absolute Value percentages number of NUTS 2 with a ratio > 101 % 77 29,5 number of NUTS 2 with a ratio < 99 % 74 28,4 number of nuts 2 with a ratio <99 or >101 151 57,9 number of NUTS 2 261 100.0 number of estimates with a ratio >101 590 number of estimates with a ratio < 99 571 28,5 number of estimates with a ratio <99 or >101 1161 58,0 number of estimates 2001

10 The distribution of points by elevation

11 0-1000 >1500 total 2012 97,13 2,85 0,02 100 master 93,22 4,69 2,09

12 Elevation - percent ratio of distribution in 2012 and distribution in master
up to 300 >1500 AT 119,6 154,1 150,3 107,9 76,9 62,7 1,0 BE 101,7 94,2 60,1 BG 118,3 107,4 89,5 73,2 61,6 24,2 0,4 CY 73,4 144,6 152,2 160,3 CZ 102,0 95,7 83,2 32,3 10,8 DE 101,6 100,6 95,5 70,1 49,9 2,8 DK 100,0 EE EL 115,1 109,1 100,3 73,0 59,3 42,0 ES 116,5 109,2 111,4 104,9 52,7 FI 106,1 19,3 1,8 FR 106,9 100,7 98,5 78,6 52,9 0,3 HU 100,9 85,3 67,3 IE 104,1 22,9 0,0 IT 120,5 110,3 98,0 83,4 70,4 58,3 0,8 LT LU 106,6 97,0 LV MT NL PL 91,9 56,4 38,0 31,9 PT 97,7 94,4 79,1 56,1 26,4 RO 123,9 57,9 31,5 24,3 7,8 SE 118,6 103,5 15,5 SI 111,7 109,5 102,2 73,9 62,2 7,3 SK 106,0 111,5 97,6 57,2 41,8 14,8 UK 108,1 64,2 10,4 24,9 EU 106,7 102,1 91,8 68,7 50,7

13 ratio sample /master up to 300 >1500 AT 116,1 152,5 174,8 128,3 71,2 22,7 1,7 BE 98,9 104,5 99,7 CZ 100,1 101,2 101,7 82,8 40,5 0,0 DE 101,6 101,9 91,6 39,0 16,6 11,8 DK 100,0 EE EL 102,9 121,9 125,2 90,8 50,9 9,7 0,9 ES 111,2 118,2 131,5 133,8 FI 100,7 91,0 96,2 FR 104,2 112,0 122,2 97,6 37,7 9,3 0,5 HU 99,9 105,4 66,9 IE 99,3 81,4 IT 116,9 116,7 113,9 90,9 60,3 18,5 2,3 LT LU 104,7 97,9 LV NL PL 100,2 101,1 94,5 75,5 42,2 PT 103,9 101,3 63,9 43,3 8,9 SE 100,6 104,1 102,1 86,5 27,9 9,4 SI 112,1 110,3 111,6 83,8 36,5 13,8 6,5 SK 101,0 106,4 110,0 82,1 52,6 12,6 UK 98,3 109,2 106,8 112,6 Total 103,3 108,4 120,6 109,0 24,4 8,3 1,3

14 Implications with yhe present method: LC and LU, typical of the area with a lower elevation, are overestimated; possible solution: use a calibrated estimator / poststratification by elevation If we limit the estimates to the «actual» reference population we obtain a partial comparability between different LUCAS rounds

15 The sample design double sampling: we assume that in every NUTS2 region the strata weights Wh = (Nh/N) estimated from the first phase sample, are correct estimates of the related percentage Wh* in the population, that is E(Wh ) = Wh* From the stratified first phase sample, a second phase simple random sample (SRS) of points is chosen; the stratified second phase sample is selected independently in each NUTS2 region and in every stratum

16 Some questions We use the master because the points are “stratified” (in 2005); the stratification do not produces so much gains in efficiency ; so the rationale could be to control the sampling allocation of land cover because the correlation with land cover (see the K.statistics) The maintaince of the master is costly; so which role can play elevation (less costly and invariant over time) ? There are other inespensive variable to be used? In different rounds indipendent samples should be selected; are all the selection rules in line with this requirement? The longitudinal structure is very important because of it decreases the errors of variations between survey rounds but it is not esplicity and clearly controlled; at which level it should be controlled?

17 estimator calibration estimator using constraints on the following totals : Nuts2*Strata; Nuts1*Elevation (<=300, , , >901) Country*Strata*Elevation The algorithm starts by the inclusion probability that is changed during the steps, in order to reproduce the known totals. Weakness: at moment no external source on elevation easy available for EU; information from master sample is used (estimate)

18 Calibration Estimator
Adopting a calibration estimator at EU/national level: coherence with other relevant available statistics/variables Reduction of biases Flexibility with regards to the availability of sources in time / in countries

19 Summary of the proposals: improvement of Lucas accuracy
to smooth these problems and other similar consistency problems with other sources it is possible : to use LUCAS only for the altimetry class (that’s could be useful only for Italian case) to calibrate LUCAS’ sample weights to auxiliary information (known totals or benchmarks) to combine estimates produce by calibrated LUCAS with those belonging from other available specialized sources (e.g. forest inventory, AGRIT, etc.) to estimate the area over 1200 mt using other sources that (for such altimetry class) can approximate quite well the LUCAS’ nomenclature Lucas integration. Luxembourg

20 S L = ∑h [∑k ILkh ykh ]* S * whk
ESTIMATOR – level NUTS 2 S L = ∑h [∑k ILkh ykh ]* S * whk where whk is obtained as the final result of the following iterations 𝑤 𝑖; 𝑣 1 ,…, 𝑣 𝑚 𝑡 1 = 𝑁 𝑣 1 ,…, 𝑣 𝑚 𝑛 𝑣 1 ,…, 𝑣 𝑚 𝑤 𝑖; 𝑣 1 ,…, 𝑣 𝑚 𝑡 0 Where: 𝑡 1 and 𝑡 0 represent two consecutive iterations; i refers to the i-th point; 𝑣 1 ,…, 𝑣 𝑚 refers to the values observed for the 1,…,m variables; 𝑁 𝑣 1 ,…, 𝑣 𝑚 are the number of points (derived from the master data set) of the values for the 1,…,m variables; 𝑛 𝑣 1 ,…, 𝑣 𝑚 are the totals of the values for the 1,…,m variables as observed in the sample; 𝑤 𝑖; 𝑣 1 ,…, 𝑣 𝑚 𝑡 1 and 𝑤 𝑖; 𝑣 1 ,…, 𝑣 𝑚 𝑡 0 are, respectively, the new and the old weight for the i-th point; starting from the inclusion probability IL is a binary function equal 1 if Y = L and 0 otherwise

21 2012 estimates and variations 2012/2009

22 Table 13: estimates of land cover by country – absolute values ( km2)
Artificial land Bare land Cropland Grassland Shrub land Water areas Wetland Woodland total AT 4405 2312 14295 20316 1572 1636 222 39170 83.928 BE 3748 154 8887 9953 135 438 69 7283 30.668 BG 2007 918 35475 22862 6734 961 100 41922 CY 598 433 3146 1221 1999 39 16 1795 9.246 CZ 3484 519 27133 16327 582 1040 123 29661 78.870 DE 26285 2719 118539 82476 3728 6383 1832 115802 DK 3022 472 20989 9245 580 730 441 7584 43.065 EE 964 503 5447 9341 1279 2240 747 24850 45.372 EL 5029 2988 30840 18023 33014 1924 631 39242 ES 18501 23955 141699 79143 80618 4567 603 149456 FI 5520 2314 20429 14199 7841 33747 16537 237254 FR 29874 4832 169654 153693 19008 7731 1043 163236 HU 3173 1022 43540 19460 2120 1779 1129 20787 93.013 IE 2964 448 4135 44155 2899 1809 4596 8940 69.946 IT 21871 4714 97634 51625 18808 8809 646 96530 LT 1606 452 17166 19410 763 1694 618 23192 64.899 LU 265 23 539 865 26 19 858 2.596 LV 1049 670 8390 15878 966 2421 1422 33790 64.586 MT 103 24 83 35 51 8 12 315 NL 4555 537 9122 14085 478 2215 182 4344 35.518 PL 10468 2648 107687 75783 3450 5661 1394 104836 PT 5108 2883 16103 15072 15089 1239 245 33105 88.843 RO 5056 1397 83516 64278 4019 4737 1707 73682 SE 8090 2860 19127 27491 23759 38168 22598 307630 SI 677 278 2205 4470 456 89 66 12035 20.277 SK 1429 249 13758 9855 1599 556 40 21540 49.026 UK 14892 2998 52040 100728 20600 5716 6352 41247 EU 184964 63353 901416 252341 136051 63211

23 country Artificial land Bare land Cropland Grassland Shrub land Water areas Wetland Woodland total AT 5,2 2,8 17,0 24,2 1,9 0,3 46,7 100,0 BE 12,2 0,5 29,0 32,5 0,4 1,4 0,2 23,7 BG 1,8 0,8 32,0 20,6 6,1 0,9 0,1 37,8 CY 6,5 4,7 34,0 13,2 21,6 19,4 CZ 4,4 0,7 34,4 20,7 1,3 37,6 DE 7,3 33,1 23,1 1,0 32,4 DK 7,0 1,1 48,7 21,5 1,7 17,6 EE 2,1 12,0 4,9 1,6 54,8 EL 3,8 2,3 23,4 13,7 25,1 1,5 29,8 ES 3,7 4,8 28,4 15,9 16,2 30,0 FI 6,0 4,2 10,0 70,2 FR 5,4 30,9 28,0 3,5 29,7 HU 3,4 46,8 20,9 1,2 22,3 IE 0,6 5,9 63,1 4,1 2,6 6,6 12,8 IT 17,2 6,3 2,9 32,1 LT 2,5 26,5 29,9 35,7 LU 10,2 20,8 33,3 0,0 33,0 LV 13,0 24,6 2,2 52,3 MT 7,5 26,3 11,3 16,3 NL 25,7 39,7 6,2 PL 34,5 24,3 33,6 PT 5,7 3,2 18,1 37,3 RO 35,0 27,0 2,0 SE 4,3 5,3 8,5 5,0 68,4 SI 3,3 10,9 22,0 59,4 SK 28,1 20,1 43,9 UK 21,3 41,2 8,4 16,9 EU 24,9 38,0

24 % variations 2012/2009 country Artificial land Bare land Cropland
Grassland Shrub land Water areas Wetland Woodland total AT 131,1 77,2 106,3 96,0 72,6 118,2 96,1 100,0 100 BE 112,4 47,5 107,5 96,8 52,1 110,6 52,3 94,9 CZ 104,3 99,0 97,4 101,8 110,4 100,1 66,1 101,0 DE 107,2 127,8 100,6 99,6 132,5 99,3 91,1 97,1 DK 108,3 120,4 100,8 96,4 78,7 108,0 88,7 100,4 EE 135,8 141,7 103,9 102,7 120,0 94,8 31,3 102,9 EL 113,0 89,7 102,2 98,3 95,5 105,1 79,9 ES 111,8 95,0 94,4 104,1 80,6 106,6 FI 102,8 54,8 100,9 126,2 36,3 98,7 85,3 107,1 FR 110,1 75,9 102,6 104,8 80,7 99,9 95,4 HU 105,3 219,8 98,5 100,2 113,4 95,6 91,9 99,2 IE 83,1 116,2 98,8 68,6 93,7 108,6 110,0 IT 109,7 74,3 102,0 96,9 85,8 168,4 85,9 99,1 LT 104,4 108,9 109,1 91,6 75,8 84,5 170,2 102,3 LU 126,8 69,7 95,2 144,4 118,8 LV 96,7 125,0 107,0 92,5 41,2 130,2 96,5 104,7 NL 106,9 139,8 72,8 51,7 95,8 PL 113,8 157,2 95,7 98,6 112,9 103,6 PT 116,6 81,9 97,5 110,2 92,6 65,7 SE 119,1 22,2 118,7 60,2 85,6 SI 114,4 66,5 107,8 82,9 71,8 115,8 SK 120,9 137,6 106,1 81,6 UK 81,2 106,7 95,3 84,1 103,0 113,7 EU 82,6 112,3 111,3 87,6 105,6 92,4

25 L. Fattorini, M. Marcheselli, C
L. Fattorini, M. Marcheselli, C. Pisani (2006), A Three-Phase Sampling Strategy for Large-Scale Multisource Forest Inventories. Journal of Agricultural, Biological, and Environmental Statistics, Volume 11, Number 3, American Statistical Association and the International Biometric Society

26 Table 27: Land cover CV (%) by countries l
Table 27: Land cover CV (%) by countries l country Artificial land Bare land Cropland Grassland Shrub land Water areas Wetland Woodland AT 4,86 11,76 2,11 2,13 12,95 6,73 23,56 1,18 BE 4,28 28,6 2,51 2,6 30,24 12,7 40,55 2,74 BG 7,55 13,35 1,19 2,18 5 12,67 44,83 1,2 CY 8,12 9,51 2,9 5,41 4,31 33,36 55,49 4,64 CZ 16,32 1,4 2,33 15,58 8,27 34,16 DE 2,04 7,15 0,74 1,07 6,16 3,92 8,71 0,69 DK 5,75 15,7 1,56 3,2 14,47 11,36 17,16 3,27 EE 12,04 19,62 4,83 3,65 12,29 5,81 17,07 1,32 EL 5,08 7,46 1,58 2,72 1,9 7,64 16,66 ES 2,3 2,22 0,65 1,16 1,23 4,54 15,57 0,73 FI 5,83 10,89 2,19 3,9 3,79 0,45 FR 1,73 5,54 0,58 0,71 2,7 3,25 11,91 0,59 HU 6,46 13,92 1,14 2,56 7,24 13,15 2,05 IE 7,06 20,75 6,13 8,07 6,43 6,22 3,76 IT 2,03 6,6 0,77 1,45 2,8 3,99 15,34 0,81 LT 8,43 20,05 2,23 14,87 8,51 17,28 1,46 LU 15,62 72,84 10,86 7,77 68,26 49,48 LV 10,18 14,66 3,46 12,2 6,5 9,43 1,04 MT 16,21 39,51 18,86 31,6 25,54 . 57 NL 16,7 3 17,18 5,72 29,26 4,45 PL 3,47 7,27 0,79 1,12 6,4 3,84 10,11 0,72 PT 4,25 6,35 2,46 2,52 8,31 22,87 1,39 RO 4,89 10,95 0,89 1,24 6,75 5,34 10,69 0,93 SE 4,74 2,53 2,83 2,89 0,39 SI 13,14 16,11 6,8 4,6 16,25 35,92 42,81 1,96 SK 9,23 28,62 3,45 13,04 70,91 1,48 UK 8,11 2,82 4,43 5,46 1,77 EU 0,78 0,25 0,34 0,80 1,64 0,20

27 efficiency indicator - land cover
efficiency indicator - land cover country Artificial land Bare land Cropland Grassland Shrubland Water areas Wetland Woodland AT 0,90 0,84 1,01 1,00 1,02 0,93 0,89 0,98 BE 0,99 BG 1,03 1,09 CY 0,94 1,06 CZ 1,05 DE DK EE EL 1,04 0,95 1,07 ES 1,08 FI FR 0,92 1,13 HU IE 0,97 IT 0,96 LT LU LV MT NL PL PT RO 1,14 0,91 SE 0,77 0,86 SI 0,57 SK 1,10 UK EU

28 Commerce, finance, business Community services Construction
country Agriculture Commerce, finance, business Community services Construction Energy production Fishing Forestry Industry and manifacturing Mining and quarrying Not used and abandoned Recreation, leisure, sports Residential Transport, communication networks, stora Water and waste treatment AT 1,39 26,83 22,59 34,12 28,09 28,38 1,13 27,31 36,68 7,00 9,67 5,91 6,91 55,52 BE 1,52 23,01 19,51 37,56 69,20 27,71 3,20 27,59 40,36 8,80 16,09 5,04 8,00 60,96 BG 0,93 34,21 28,41 41,65 48,59 23,10 1,33 34,84 33,93 3,49 21,80 8,38 11,17 29,63 CY 2,61 35,78 37,53 29,85 53,37 8,24 38,47 2,56 28,70 12,65 14,10 40,76 CZ 26,27 20,68 49,84 45,17 11,58 1,28 20,46 24,56 5,83 12,49 7,78 7,80 23,57 DE 0,46 8,04 5,97 19,60 13,78 9,60 0,74 9,83 8,15 3,02 4,31 2,93 14,08 DK 1,11 17,53 17,54 43,82 57,12 34,18 4,08 29,34 106,63 5,47 8,75 6,11 8,96 42,39 EE 2,21 100,00 . 35,94 13,39 1,31 70,69 18,80 8,85 18,33 16,27 EL 1,19 23,45 21,79 28,83 17,39 14,26 2,16 33,02 21,81 1,56 15,97 8,69 7,07 23,24 ES 0,45 16,42 10,10 14,09 11,65 18,26 1,04 16,82 10,98 0,85 7,98 4,21 3,50 7,14 FI 1,94 29,31 55,56 15,37 4,24 0,47 34,57 12,27 2,72 2,59 7,23 6,09 59,05 FR 0,35 10,83 6,21 16,20 15,61 7,20 13,28 12,14 1,55 4,58 2,13 2,51 14,67 HU 0,84 33,77 25,07 102,40 49,91 14,93 2,10 27,60 30,08 13,76 6,59 10,54 22,21 IE 0,98 50,46 52,24 101,17 58,41 18,53 4,85 58,22 9,82 5,09 12,72 8,91 11,15 37,75 IT 0,57 9,16 12,39 13,52 12,03 10,99 1,05 11,62 16,91 1,62 6,92 3,11 3,56 23,87 LT 1,01 49,49 10,07 1,46 37,69 7,42 18,65 11,47 12,25 58,54 LU 4,61 81,56 96,90 106,73 6,80 58,36 60,83 35,12 23,59 LV 1,60 57,60 35,16 9,45 70,43 18,55 4,86 10,63 10,47 70,71 MT 15,33 70,26 22,50 36,33 NL 1,41 20,76 20,39 26,48 95,52 10,85 27,40 58,62 6,62 7,09 6,49 5,86 38,56 PL 0,53 15,46 8,94 17,92 33,76 8,25 0,76 15,74 13,32 2,22 5,39 3,44 4,65 17,29 PT 1,21 23,05 22,95 24,14 32,99 59,71 1,58 28,18 25,88 22,29 6,97 5,94 34,64 RO 0,51 34,33 26,51 28,00 43,48 6,58 0,92 21,20 25,05 22,93 5,65 7,87 39,30 SE 1,69 28,37 12,35 59,31 10,79 2,68 0,44 21,17 20,08 1,70 2,46 5,95 5,17 43,08 SI 3,66 60,79 41,59 59,73 68,05 52,22 2,18 57,10 45,35 9,35 24,50 15,15 17,11 61,76 SK 102,55 29,83 104,36 35,46 22,02 1,50 56,12 6,77 21,18 12,77 14,49 36,06 UK 0,60 12,05 32,79 23,25 10,61 2,24 17,07 13,69 2,26 4,69 3,64 5,38 16,94 EU 0,17 3,72 2,84 5,79 4,51 1,74 0,23 4,34 3,52 0,52 1,27 1,15 4,76

29 Commerce, finance, business Community services Construction
country Agriculture Commerce, finance, business Community services Construction Energy production Fishing Forestry Industry and manifacturing Mining and quarrying Not used and abandoned Recreation, leisure, sports Residential Transport, communication networks, stora Water and waste treatment AT 1,03 0,86 1,06 0,76 1,18 1,20 0,95 0,99 1,05 0,98 0,94 1,01 0,91 1,21 BE 1,00 0,97 0,79 BG 1,02 0,92 0,96 1,04 CY 0,93 . CZ DE DK EE EL 1,08 ES FI FR 1,15 HU IE IT 1,11 LT LU 0,82 1,07 LV MT NL PL PT RO SE 1,13 1,14 0,85 SI 0,87 SK 1,23 UK EU

30 Data “projection” The sample selection in 2012 survey did not follow the random rules established for the previous and the successive occasions because of the pressure from the users of the LUCAS point data to select “accessible points” ; so some biasess are found in the estimates when comparing and analysing the changes. A solution in combination with the weight system: to impute, into the 2012 sample, the units randomly collected in 2009 but not present in 2012, hypothesizing a sort of “enlargement” of the longitudinal structure

31 The model Because of the lapse of time we have to take into account the changes at micro level Problems How to identify the units to be changed How to change the selected units Method: to model the “change probability” of the points according to specific characteristics. The model has been estimated from the actual changes from 2009 to 2012 of the points in common to the two surveys; then the model was applied to the 2009 data not present in 2012, obtaining the estimated status of a specific point in 2012.

32 The model In mathematical expressions:
LCt1 = f(LCt0, LUt0, elevation, country) where t1 represents the “imputation” year, t0 represents the “base” year, land cover estimated for “imputation” year; f identifies a linear logistic function; LC,LU, elevation, country refer, respectively, to the land cover, land use, elevation and Country for the point as observed in the base year; For what concerns the Elevation, the following values are considered: <300; between 301 and 600, between 601 and 900; more than 901. For land cover it is intended the first letter of the variable LC1 For land use are intended the first three letters of the variable LU1

33 2012 data 2009 data Data «projected» from 2012 to 2009 Model estimation Data in common New participating countries

34 From 2009 to 2012 - Main results – land cover
For the total of the participating countries, the imputation procedure increases significantly bareland, shrubland and wetland, where increases higher of 10% occur. Water areas, cropland and grassland remain substantially stable (with small increase/decreases); artificial land (-4%) and woodland (-2%) decrease their amounts of respectively -4% and 2%. Of the three most relevant areas cropland and grassland remain substantially unchanged while woodland shows a small decrease of 2%. The procedure produces an increase in estimation (ratios greater than 100) in the most of countries for wetland (14 countries) followed by shrubland and woodland (13 countries) while for the remaining typologies the number of countries with ratios lower than 100 are the majority. Regarding the “intensity” of changes operated by the procedure, it can be pointed out the increases greater than 5% in 11 countries for wetland and 6 countries for shrubland and the decreases lower than 5% for bareland (10 countries) and water areas (5 countries). Tables 6 e 8 LC e 14 LU

35 Ratios tables - 2012 projected/original land cover LC_CVs projected/LC_CVs original

36 percentages ratios between projected and original land cover by countries
country Artificial land Bare land Cropland Grassland Shrub land Water areas Wetland Woodland AT 93,38 76,96 103,58 99,60 105,44 94,34 116,44 100,93 BE 99,54 90,01 100,13 98,74 92,46 93,68 93,78 102,60 BG 99,99 99,87 100,00 100,01 100,02 CY 100,04 99,96 100,52 97,66 99,98 CZ 99,65 101,97 99,72 100,66 104,89 104,96 100,67 99,63 DE 97,54 107,00 99,37 99,53 97,23 99,45 100,64 101,48 DK 97,87 88,96 99,78 102,70 87,91 92,03 99,31 100,60 EE 84,95 94,62 94,10 94,82 104,56 299,75 97,64 EL 90,79 99,48 98,62 98,98 101,84 95,01 112,08 101,28 ES 95,50 110,58 98,85 99,14 102,83 100,33 117,52 98,80 FI 98,95 108,04 103,90 89,13 243,57 100,21 119,86 FR 96,45 80,90 99,88 97,10 105,17 97,94 107,39 103,51 HU 97,46 87,27 99,66 99,93 93,93 101,99 109,16 101,75 IE 91,81 79,62 100,76 137,33 104,86 91,43 91,53 IT 96,70 82,39 100,86 97,22 104,49 85,66 108,36 LT 95,98 86,33 99,57 99,07 97,48 106,35 88,22 101,57 LU 99,36 99,33 100,07 98,45 98,65 100,38 LV 97,40 100,15 98,14 100,09 118,41 86,91 106,91 100,62 MT 99,39 98,44 99,62 101,25 100,37 NL 96,93 89,49 99,50 125,43 101,21 171,15 103,64 PL 97,56 97,65 98,64 102,10 104,95 100,22 PT 95,35 116,30 98,13 95,38 112,86 113,86 99,95 RO 100,14 99,97 SE 87,17 399,58 101,04 92,56 165,93 106,41 106,31 91,80 SI 97,28 98,91 97,01 94,89 165,63 110,91 101,14 SK 95,48 83,88 97,61 89,87 95,32 127,47 102,58 UK 70,89 99,21 104,32 100,12 98,88 89,38 EU 96,29 112,97 99,70 99,03 113,41 101,12 110,47 98,08

37 country Artificial land Bare land Cropland Grassland Shrub land Water areas Wetland Woodland AT 99,81 121,53 111,01 95,18 87,96 96,64 94,18 89,76 BE 96,04 100,71 97,25 95,95 97,80 97,86 96,37 90,96 BG 100,05 99,97 100,20 100,15 100,03 100,00 99,98 99,91 CY 100,01 99,96 100,09 99,99 CZ 99,35 97,09 98,97 96,39 94,19 97,63 99,33 DE 99,20 93,34 98,91 97,53 95,25 94,77 93,87 DK 97,79 102,53 97,91 94,48 96,77 101,16 91,40 93,85 EE 94,66 91,26 94,58 92,87 87,94 75,48 46,19 95,39 EL 97,12 89,73 94,75 92,12 86,97 91,47 83,95 86,86 ES 96,57 92,54 97,20 95,10 88,98 91,95 84,22 92,07 FI 77,93 71,69 81,88 80,93 47,48 93,57 68,78 90,20 FR 97,32 106,39 98,47 98,30 88,68 95,03 92,01 89,93 HU 92,17 97,47 93,35 91,20 93,32 89,36 86,22 89,55 IE 91,57 95,97 91,10 89,50 74,12 85,66 93,22 92,35 IT 96,93 102,70 98,18 96,30 88,51 97,66 90,81 88,41 LT 98,40 97,40 96,94 90,46 80,23 90,35 92,30 LU 99,45 99,70 99,85 99,50 100,40 98,66 LV 98,93 93,15 99,46 96,42 82,50 93,39 80,06 94,59 MT NL 94,73 98,49 95,19 95,20 83,00 91,62 71,14 90,37 PL 99,40 98,78 97,51 95,69 92,93 95,11 PT 87,14 97,95 98,90 91,88 83,06 95,14 RO 100,13 100,35 100,02 99,59 SE 93,13 40,78 90,90 89,49 63,11 86,15 80,28 97,64 SI 99,29 98,95 99,02 100,52 76,33 91,97 96,70 SK 93,55 99,12 93,93 94,67 92,58 80,83 88,35 UK 90,39 103,95 92,80 87,10 83,19 87,98 85,30 92,62 EU

38 Land use main results The redistribution operated by the procedure for land use is heavier than for land cover. For the total of the 23 participating countries the imputation procedure increases the areas of “community services” , “not used”, and “water and waste treatment”; in particular the areas of “not used” and “community services” are enlarged for about 15% and 10%. The procedure decreases the areas of the remaining types of land use where the higher decreases are related to “fishing”, about 15%, and “energy production”, about 14%, that however represent small percentages of land use. Of the bigger areas “agriculture” remain substantially unchanged but “unused” and “forestry” present respectively an increase of about 15% and a decrease of about 3%. The procedure produces an increase in estimation (ratios greater than 100) in the most of countries for “community services” (13 countries) and “mining” (12 countries); for “forestry” and “not used” the number of countries with an increase equals the number of those with a decrease (11 countries) while for the remaining typologies the number of ratios lower than 100 are the majority ( it ranges from 1 to 10). Regarding the “intensity” of changes operated by the procedure, it can be pointed out that the number of increases greater than 5%, is lower than the number of decreases lower than 5%; these last ones are present in almost all the typologies while in “agriculture”, “commerce”, “construction” and “residential” there is any increase greater than 5%. country Community services Commerce, finance, business Agriculture Construction Forestry Fishing Energy production Not used and abandoned Mining and quarrying Industry and manifacturing Recreation, leisure, sports Water and waste treatment Transport, communication networks, stora Residential 90,9 99,1 AT 96,2 91,8 94,0 110,0 91,4 93,4 112,3 100,4 93,8 93,0 98,9 99,0 99,7 96,3 BE 87,0 103,4 101,6 88,9 91,1 96,4 91,5 97,0 BG 101,7 94,8 100,0 100,1 100,2 99,9 CY 21,4 0,0 134,0 31,0 203,6 20,3 99,4 99,6 CZ 100,3 47,1 103,8 104,7 98,0 92,7 99,8 DE 75,7 90,2 88,0 92,4 101,3 92,0 98,4 97,5 97,1 98,7 95,8 DK 94,5 101,8 91,0 89,3 83,9 100,6 97,3 96,8 85,4 105,9 97,9 97,4 EE 99,5 115,6 92,9 80,1 35,5 61,8 92,2 94,4 EL 94,6 95,1 95,3 78,8 86,8 91,6 96,6 83,6 87,1 96,9 94,9 ES 88,2 87,9 92,3 95,0 92,6 98,1 FI 79,6 82,4 91,9 77,0 82,6 94,7 85,2 90,7 74,2 85,3 55,6 80,0 FR 100,5 78,6 96,0 102,0 96,1 85,9 95,2 95,5 98,6 97,6 HU 93,7 97,7 86,9 101,1 89,9 85,7 81,1 86,1 IE 73,1 88,5 98,8 88,6 93,2 82,2 89,2 100,9 95,4 IT 87,5 96,5 88,8 77,8 97,2 LT 57,9 57,8 110,5 89,8 83,0 89,7 98,3 63,1 LU 76,4 101,0 LV 103,6 88,4 79,9 MT 73,2 93,1 NL 93,6 86,6 73,7 96,7 92,8 87,2 PL 94,1 98,2 99,3 PT 52,5 80,4 93,3 88,1 92,1 RO 82,5 SE 93,5 101,2 78,0 91,2 SI 95,9 99,2 89,5 SK 57,6 69,9 81,3 85,1 84,4 101,9 UK 82,0 90,3 95,7 88,7 79,5 89,4 EU  tables 12 e 14

39 Ratios tables - 2012 projected/original land use LU_CVs projected/LU_CVs original

40 Commerce, finance, business Community services Construction
country Agriculture Commerce, finance, business Community services Construction Energy production Fishing Forestry Industry and manifacturing Mining and quarrying Not used and abandoned Recreation, leisure, sports Residential Transport, communication networks, stora Water and waste treatment total AT 101,1 89,4 98,9 102,3 100,8 102,7 100,1 89,0 59,8 101,9 99,1 94,9 95,7 101,0 100,0 BE 95,3 116,5 91,0 88,9 88,2 120,1 91,6 95,2 96,2 103,3 88,3 BG 99,8 99,9 99,7 100,5 100,2 CY 99,5 99,4 98,1 98,7 100,7 99,2 CZ 431,6 97,6 95,5 90,4 96,9 107,3 100,9 97,9 151,1 DE 98,3 111,0 97,1 94,8 110,6 102,2 106,6 96,0 97,0 102,5 DK 93,6 89,6 115,0 104,3 95,8 94,2 90,8 97,7 72,6 EE 74,9 65,7 37,3 95,9 73,7 108,4 170,9 194,0 81,6 91,2 EL 92,5 91,5 92,0 82,5 80,2 93,9 114,7 94,0 93,3 111,9 93,8 ES 110,4 93,7 86,3 105,7 102,0 99,3 93,0 96,1 119,6 FI 81,2 62,8 69,2 89,5 91,3 83,9 174,1 94,7 89,7 59,6 FR 99,0 100,4 97,8 95,4 95,0 106,5 89,3 104,0 HU 82,8 107,9 79,0 88,5 101,8 107,5 106,1 111,6 92,3 IE 102,4 81,5 151,5 80,5 98,5 66,7 81,9 108,3 92,6 104,4 91,7 87,7 58,8 IT 97,5 112,3 87,3 103,2 125,9 LT 98,8 259,6 267,2 66,2 121,1 98,0 167,6 105,2 125,2 LU 107,0 153,1 LV 84,7 80,0 83,3 79,2 91,1 143,8 MT 98,4 NL 109,4 89,8 145,3 101,6 105,0 90,3 92,8 PL 108,9 97,2 96,5 97,4 101,3 PT 102,1 91,8 128,2 291,2 101,7 103,9 100,6 110,1 96,4 91,9 RO 100,3 SE 75,3 82,0 73,4 90,6 106,4 177,4 68,8 90,7 83,4 75,0 SI 98,2 101,5 115,3 96,8 SK 164,2 233,3 82,6 83,5 124,1 80,3 112,7 96,7 92,4 UK 104,5 115,9 87,2 79,6 87,0 104,7 117,7 94,1 94,3 EU 99,6 86,4 115,1 105,5

41 country Agriculture Commerce, finance, business Community services Construction Energy production Fishing Forestry Industry and manifacturing Mining and quarrying Not used and abandoned Recreation, leisure, sports Residential Transport, communication networks, stora Water and waste treatment AT 99,1 90,9 96,2 110,0 94,0 91,8 91,4 100,4 112,3 93,4 93,8 99,0 98,9 93,0 BE 96,3 99,7 87,0 101,6 103,4 91,1 88,9 91,5 96,4 97,0 94,8 101,7 BG 100,1 100,0 100,2 99,9 CY 0,0 21,4 134,0 20,3 203,6 31,0 CZ 99,6 99,4 47,1 100,3 104,7 103,8 99,8 92,7 98,0 75,7 DE 90,2 88,0 92,0 101,3 92,4 97,1 97,5 98,4 98,7 94,5 DK 95,8 91,0 101,8 83,9 89,3 100,6 85,4 96,8 97,3 97,4 97,9 105,9 EE 92,9 115,6 99,5 80,1 61,8 35,5 92,2 EL 94,4 94,6 95,1 86,8 78,8 95,3 91,6 87,1 83,6 96,6 96,9 ES 94,9 88,2 87,9 95,0 92,3 92,6 98,1 79,6 FI 82,4 82,6 77,0 91,9 90,7 85,2 94,7 74,2 80,0 55,6 85,3 78,6 100,5 FR 96,0 96,1 102,0 85,9 98,6 95,5 95,2 97,6 97,7 93,7 HU 86,9 101,1 85,7 89,9 81,1 IE 86,1 73,1 88,5 88,6 98,8 89,2 82,2 93,2 100,9 IT 95,4 87,5 96,5 77,8 88,8 97,2 LT 57,9 57,8 110,5 89,7 83,0 89,8 63,1 98,3 76,4 LU 101,0 LV 103,6 88,4 79,9 93,1 73,2 MT NL 86,6 93,6 73,7 87,2 92,8 96,7 PL 94,1 98,2 99,3 PT 80,4 52,5 93,3 92,1 88,1 82,5 RO SE 93,5 101,2 78,0 91,2 SI 95,9 99,2 89,5 SK 69,9 57,6 81,3 101,9 84,4 85,1 UK 90,3 82,0 95,7 79,5 88,7 89,4 EU

42 From 2012 to 2009 - Main results – land cover
For the total of the 23 participating countries, the imputation procedure increases the artificial land, water and woodland; the highest increase is about 3.2% for artificial land. It decreases the other typologies of land cover; in particular it has a relevant impact for bareland, where the ratio is about 86% or, in other words, the area is 14% shortened. Of the three most relevant areas cropland and grassland remain substantially unchanged while woodland shows a light increase of 1.5%. The procedure produces an increase in estimation (ratios greater than 100) in the most of countries for artificial land (19 countries) followed by cropland, grassland and woodland (15 and 14 countries); for water areas the increase equals the decreases (11 countries) while for bareland, shrubland and wetland the number of ratios lower than 100 are the majority ( respectively 20, 18 and 14). Regarding the “intensity” of changes operated by the procedure, an increases greater than 5% in 8 and 6 countries respectively for artificial land and water areas and decreases lower than 5% for bareland shrubland and wetland (respectively in 16, 11 and 12 countries). Tables 7 e 8 LC e 14 LU

43 percentages ratios between projected and original land cover by countries (from2012 to 2009)
Artificial land Bare land Cropland Grassland Shrubland Water areas Wetland Woodland AT 120,88 50,64 103,31 101,45 82,42 111,01 101,60 100,63 BE 107,06 67,20 102,61 99,47 81,37 102,40 48,67 97,60 CZ 100,51 88,00 99,35 100,17 111,79 102,69 89,23 100,45 DE 103,45 84,07 100,72 99,15 98,37 91,11 98,71 DK 106,03 93,15 100,50 98,95 96,19 101,97 88,34 99,06 EE 108,49 101,32 99,44 100,22 111,46 98,57 93,74 100,02 EL 99,05 93,00 100,92 100,24 94,64 103,38 92,83 104,71 ES 104,67 78,46 101,19 96,90 94,63 92,00 103,81 FI 98,43 90,88 101,04 103,66 84,70 98,84 102,04 101,42 FR 103,74 84,40 100,37 101,95 91,26 98,65 98,50 99,22 HU 100,96 98,20 100,11 99,87 100,35 98,35 100,61 99,91 IE 101,76 90,26 99,33 100,38 97,42 98,26 99,31 100,41 IT 103,83 92,32 97,21 94,69 143,22 90,80 99,85 LT 101,22 94,53 101,21 99,58 87,94 142,50 100,26 LU 120,02 108,73 90,89 108,90 71,45 116,45 0,00 92,42 LV 96,67 85,90 97,91 79,15 112,74 NL 101,38 101,94 99,64 100,21 96,11 96,79 90,91 101,53 PL 107,05 82,96 98,78 97,85 103,06 98,09 101,30 102,65 PT 108,24 90,48 101,43 101,09 95,67 108,50 77,38 100,86 SE 103,05 96,54 99,71 104,37 93,85 98,24 101,74 SI 107,57 86,99 104,86 103,97 100,81 128,03 109,64 97,61 SK 102,99 97,30 99,95 98,07 99,17 104,00 99,77 UK 99,90 96,49 100,52 94,54 101,81 113,13 104,14 Total 103,20 86,07 99,81 99,63 94,90 102,03 99,19 101,54

44 coefficient of variations (%) for land cover estimates (from 2012 to 2009)
Artificial land Bare land Cropland Grassland Shrubland Water areas Wetland Woodland AT 4,89 16,35 2,08 2,04 8,45 6,51 23,41 1,11 BE 4,21 22,69 2,54 2,40 22,23 12,53 36,06 2,48 CZ 4,88 16,86 1,35 2,31 15,28 7,74 28,86 1,18 DE 2,03 8,17 0,73 1,03 6,83 3,73 8,30 0,64 DK 5,62 16,46 1,52 3,03 11,99 11,25 15,70 3,10 EE 11,57 20,39 4,52 3,31 11,09 4,43 7,88 1,25 EL 4,99 6,56 1,49 2,47 1,69 6,67 13,69 1,36 ES 2,24 2,44 0,58 1,10 4,19 13,31 0,68 FI 4,60 6,28 1,74 3,30 2,83 1,31 2,61 0,40 FR 4,80 0,57 0,69 2,30 3,06 11,15 0,53 HU 6,01 18,85 2,33 9,15 6,33 11,33 1,81 IE 6,54 17,00 6,05 1,00 5,85 5,51 5,80 3,48 IT 1,98 5,41 0,75 3,90 14,14 LT 8,21 19,21 2,35 12,28 6,72 16,04 LU 15,68 58,40 7,43 97,41 49,48 0,00 7,35 LV 9,98 15,89 3,44 2,13 7,91 6,09 7,58 1,02 NL 4,11 18,50 2,91 13,97 5,19 20,53 3,93 PL 3,51 9,69 0,76 1,09 6,42 3,66 9,41 PT 4,22 5,67 2,09 2,32 7,40 18,55 SE 3,29 2,22 1,85 1,20 0,38 SI 13,26 14,93 6,97 4,62 14,47 26,55 42,39 1,90 SK 8,90 30,73 3,20 9,55 12,07 57,32 1,30 UK 2,57 6,38 1,27 0,82 2,27 3,96 4,66 1,61 EU

45 Main results land use The redistribution operated by the procedure for land use is heavier than for land cover. For the total of the 23 participating countries the imputation procedure increases the areas of “commerce, financial and business” , “fishing”, “residential” , “transport” and “forestry”; in particular the area of “commerce” is enlarged for about 13% but it is related to not relevant amount. The procedure decreases the areas of the remaining types of land use where the higher decrease, about 7%, are related to “mining and quarrying” and “energy production” that however represent small percentages of land use. The bigger areas remain substantially unchanged; the increase or decrease for “forestry”, “agriculture” and “not used” are not relevant. The procedure produces an increase in estimation (ratios greater than 100) in the most of countries for “residential” (16 countries); for “fishing”, “not used” and “transport” the increase equals the decreases (10/11 countries) while for the remaining typologies the number of ratios lower than 100 are the majority ( it varies from 5 to 9). Regarding the “intensity” of changes operated by the procedure, it can be pointed out that increases greater than 5% are present in almost all the land use typologies for a relevant number of countries (from 6 to 11); the same for the decreases lower than 5%.

46 Commerce, finance, business
country Agriculture Commerce, finance, business Community services Construction Energy production Fishing Forestry Industry and manifacturing Mining and quarrying Not used and abandoned Recreation, leisure, sports Residential Transport, communication networks, stora Water and waste treatment AT 102,01 94,50 97,67 125,00 201,00 99,33 101,00 135,00 304,00 75,57 76,16 114,70 103,15 68,00 BE 99,50 131,50 82,13 110,00 0,00 148,50 98,17 87,33 98,21 88,52 108,79 101,20 86,50 CZ 99,88 100,50 88,14 52,00 103,50 100,67 140,67 125,50 99,44 107,36 106,16 93,46 89,60 DE 100,29 104,17 91,00 165,00 85,20 97,56 98,00 92,00 105,66 100,65 101,70 104,68 DK 98,81 100,25 117,88 82,50 87,29 91,04 153,50 85,00 113,70 96,14 115,86 110,23 140,00 EE 100,00 70,00 103,00 183,50 100,34 113,25 96,79 87,60 116,21 96,17 EL 99,53 77,50 109,50 118,00 79,00 91,33 92,71 117,00 132,50 108,03 92,50 97,79 106,25 106,50 ES 95,47 76,00 104,67 146,00 154,00 90,50 102,82 93,33 108,33 100,62 99,00 94,33 FI 101,86 90,33 168,00 107,68 101,09 99,60 94,71 96,39 107,82 FR 99,94 86,67 91,43 109,00 97,39 137,00 93,50 105,81 92,79 105,09 105,10 HU 100,16 64,00 111,33 108,00 101,33 99,93 107,00 95,00 100,06 99,29 102,42 102,37 100,40 IE 100,10 81,67 115,00 113,80 95,61 98,66 105,40 95,24 101,54 99,17 IT 98,96 93,60 89,75 133,00 142,50 102,50 111,65 90,00 88,67 88,98 105,82 107,39 99,32 89,00 LT 102,00 63,00 147,44 99,41 88,00 109,76 73,20 96,15 96,41 LU 98,64 79,11 93,89 112,19 85,32 149,63 123,48 70,43 LV 99,43 59,00 105,25 99,37 99,96 114,06 116,92 105,57 NL 99,61 97,08 40,13 90,63 104,78 100,87 102,25 136,00 PL 98,06 121,80 61,00 102,47 89,50 116,50 99,27 99,08 110,39 105,47 119,00 PT 104,40 124,00 140,50 114,50 177,00 65,50 94,15 151,00 82,67 100,38 81,00 100,96 119,58 71,00 SE 100,44 120,50 115,87 102,43 111,00 130,00 91,64 105,88 102,55 105,85 SI 101,95 51,00 279,00 213,00 97,81 82,00 216,00 90,69 123,44 108,10 114,20 155,00 SK 99,92 94,31 66,00 94,00 101,40 100,54 97,00 104,00 96,96 94,25 102,52 103,80 UK 98,42 106,14 107,35 105,00 95,60 105,75 97,47 99,82 101,27 69,60 EU 98,89 113,32 95,83 98,75 93,03 100,90 98,22 93,13 99,40 98,12 105,19 103,87 98,29

47 Commerce, finance, business
country Agriculture Commerce, finance, business Community services Construction Energy production Fishing Forestry Industry and manifacturing Mining and quarrying Not used and abandoned Recreation, leisure, sports Residential Transport, communication networks, stora AT 93,54 75,97 87,38 98,92 52,59 79,48 91,58 58,10 49,66 132,05 102,69 82,38 81,81 BE 88,27 72,77 88,44 73,24 55,40 83,62 86,71 71,63 78,55 84,66 78,12 83,86 CZ 94,58 84,47 96,24 121,65 98,09 92,75 80,69 81,87 90,72 87,81 94,41 DE 92,24 88,03 86,17 95,74 82,44 91,75 93,01 88,42 88,55 85,84 87,52 90,38 87,30 DK 86,39 81,44 72,33 101,43 73,19 89,32 87,18 67,65 79,73 74,94 81,59 78,41 80,49 EE 97,72 0,00 100,21 88,32 64,28 95,22 70,69 85,07 96,25 108,04 89,14 99,41 EL 89,11 99,34 85,77 85,30 94,82 94,47 92,93 95,50 83,16 82,08 88,34 91,30 88,21 ES 78,63 84,27 85,86 74,10 97,01 81,30 88,45 83,34 79,25 81,06 86,79 87,84 FI 95,27 92,51 91,85 91,94 81,89 90,80 91,04 95,52 85,95 94,88 97,98 91,63 94,83 FR 91,67 91,56 88,56 90,16 76,42 87,57 88,19 83,22 85,98 81,60 89,59 85,75 87,20 HU 99,20 90,03 95,09 99,61 97,36 92,50 99,14 100,23 99,80 98,80 99,43 98,25 98,42 IE 96,43 100,83 100,49 102,37 70,51 97,57 99,70 94,59 97,47 IT 89,82 90,19 89,58 79,74 55,00 83,48 76,13 92,28 81,73 90,34 80,78 84,82 87,97 LT 96,30 100,03 99,18 100,00 99,37 65,07 94,28 100,08 73,83 84,88 102,44 96,89 93,79 LU 96,66 101,29 79,30 70,03 78,93 LV 93,13 84,91 100,56 72,79 78,09 90,90 100,22 82,96 86,69 79,45 83,27 84,10 NL 98,83 99,73 95,49 103,09 127,98 97,37 101,71 81,66 91,50 96,53 92,49 PL 93,15 94,24 82,22 92,79 84,48 94,23 85,28 91,91 89,26 88,13 87,05 87,63 PT 82,90 74,40 75,94 79,31 68,92 76,84 83,23 80,58 88,40 82,46 75,56 SE 93,84 101,06 88,54 98,32 92,00 80,82 88,96 98,14 90,32 96,50 86,09 92,46 SI 83,80 101,31 41,18 87,37 46,74 87,27 100,15 69,62 100,10 91,93 80,93 79,41 SK 99,01 98,60 93,07 100,46 96,71 98,59 88,94 98,64 97,67 97,00 98,18 UK 95,00 98,85 95,21 82,59 82,54 86,43 96,74 86,37 88,09 93,12 96,46 96,15 EU

48 2009 data 2012 data Data in common Model estimation Data «projected» from 2012 to 2009 New participating countries

49 Quality report 2012 Stratification
Double classification and estimation The production process

50 Recoding of land cover and land use in 2009 data
In 2012 the introduction of a more restrictive definition of bareland (from a coverage of 50% to 90%) and the exclusion of mire and swamp forests from land cover peatbogs and the contextual assignment of points to woodland, if the tree canopy covers more than 10%. In comparison with 2009, this explains mostly the decrease of bareland, due to the more restrictive definition and the swap from Wetland to Wooded areas. As far as land use is concerned, 2 classes were suppressed Hunting and natural reserve as they represent more a “status” rather than a real use; the suppression caused a redistribution of the areas of the different uses and impacted the comparison with previous year.

51 The reclassification procedure
Deterministic: the original code is simply replaced by the new one (as for example, of “wet forest ” recoded as “wooded area”). For the points in which, in 2009, land use is equal to “hunting”, “nature reserve” and “unused and abandoned areas” (code that were dropped in the 2012 classification) the procedure uses the information collected over the same point in 2012 if the land cover remain unchanged. For the points that changed the land cover in 2012 or not surveyed in 2012 the new land use is derived from a probabilistic imputation that is a random selection of the code among the three most frequent land use codes, given the related land cover; the probabilities are derived by considering the cross distribution of land cover and the land use for those point in common to 2009 and to 2012 (and the points are restricted only to those that, in 2009, had the land use that will be changed). In the 2009 data set the new recoded variables are added and the original ones are preserved.

52 Table 1: land cover and land use recoding
not changed changed Totale 195338 39001 234339 174 32 206 195512 39033 234545

53  country land use changed land cover changed Total collected points percentages (1) (2) (3) (1)/(3) (2)/(3) AT 198 4 4959 3,99 0,08 BE 130 6 1804 7,21 0,33 CZ 288 1 4663 6,18 0,02 DE 1251 18 21118 5,92 0,09 DK 218 2541 8,58 0,04 EE 354 2666 13,28 0,00 EL 2359 7762 30,39 0,05 ES 7435 27 29912 24,86 FI 3920 15 19896 19,70 FR 3856 26 32329 11,93 HU 419 10 5513 7,60 0,18 IE 314 4164 7,54 IT 3313 9 17849 18,56 LT 231 3861 5,98 LU 152 3,95 LV 539 3825 14,09 NL 309 25 2401 12,87 1,04 PL 23 18502 12,75 0,12 PT 1008 2 5428 18,57 SE 8204 19 26657 30,78 0,07 SI 144 1203 11,97 SK 318 2898 10,97 UK 1860 16 14442 12,88 0,11 EU 39033 206 234545 16,64

54 Code transitions Land cover: great part of the transitions (174 cases) are concentrated in the passage from B43 to B23. land use: the codes U410 and U420 are new ones and so the percentages are equals to 100%; they derive for the great part from the old U400. land use: the new codes U130 and U361 derives from the old U364 and U400 in about 30% of the cases. For the other codes the passages are low or in terms of percentages or in terms of absolute value.

55 Stratification – double classification
in case of uncertain classifications or in other cases envisaged in interpretation guidelines, it was possible to classify the point under two different strata. The percentage of double classification can be considered an indicator of uncertainty in photo-interpretation process; it is in average 6.2% but it is greater for “grassland” (21.5%) and “woodland” (13.4%) strata

56 Principal land cover Secondary land cover Artificial land Cropland Woodland Shrub land Grassland Bare land Total 48 4 1059 200 6740 3719 11722 112 840 3336 91 4379 3 1 165 169 34 2 73 109 6 25 31 Water areas Wetland 1256 1046 10101 4048 16458

57 Double classification and estimation
The main variable represents only partially the actual state of the surveyed point (e.g. in the case of mixed or overlapping crops ) and it could generate some biases when we summarize all the information only by the main land cover. the points classified by only the principal land cover are about 94% of the total. The remaining 6% are classified in the other cells of the table that contain the “changes” operated by the double classification but it depends also on the level of classification used The double codes are concentrated in the combination of the main “cropland” with secondary “grassland” (about 41% of the total of points double classified) and “bareland” (23%) and principal “woodland” with secondary grassland (about 20%).

58 Principal land cover Secondary land cover <5% 5%-10% 10% -25% 25% - 50 % 50% - 75% >75% total 34 11 14 16 28 135 238 5% -10% 12 30 52 58 122 468 742 10% - 25% 38 49 248 370 680 1677 3062 25% - 50% 45 70 377 943 1419 2390 5244 32 91 334 1108 1271 1840 4676 > 75% 88 161 355 416 1134 2531 Total 249 412 1380 2872 3936 7644 16493

59 Un-weighted transition matrix - strata by recoded land cover
Table 20: Un-weighted transition matrix - strata by recoded land cover land cover reclassified (2012) Strata (2005) Arable land Permanent crops Grassland Wooded areas and shrub land Bare land Artificial land Water total 56262 2208 16383 3118 2103 1355 281 81710 657 7046 656 615 123 179 11 9287 5269 717 28346 6651 458 1392 1047 43880 Wooded areas and shrub land 1681 1415 9492 95123 692 2035 1989 112427 127 81 720 1410 561 363 882 4144 499 291 2536 1269 146 7521 97 12359 39 1 208 481 51 49 5624 6453 Total 64534 11759 58341 108667 4134 12894 9931 270260

60 The production process

61 EU 739 270260 407 COUNTRY No. Surveyors Surveyed Points Ex-ante PI
Survey Time Start End Austria 13 6467 9 15-apr-12 08-sep-12 Belgium 6 2446 17-may-12 01-nov-12  Bulgaria 28 6642 03-may-12 01-oct-12  Cyprus 15 1442 54 03-apr-12 04-oct-12 Czech Republic 11 5514 23-apr-12 20-aug-12 Germany 31 24943 04-may-12 29-oct-12 Denmark 3444 14-may-12 17-sep-12 Estonia 3 2202 30-apr-12 19-sep-12  Greece 39 7828 202 28-mar-12 26-sep-12 Spain 75 35377 02-mar-12 07-oct-12 Finland 24 13482 28-may-12 France 115 38338 07-apr-12 21-oct-12 Hungary 19 4637 05-apr-12 26-aug-12 Ireland 3484 19-dec-12 Italy 110 21013 17-apr-12 28-jan-13  Lithuania 7 3889 07-may-12 28-sep-12 Luxembourg 1 215 26-apr-12 08-aug-12  Latvia 10 4420  Malta 79 01-may-12 10-may-12 Netherlands 2229 12-may-12 14-sep-12 Poland 41 21806 11-nov-12 Portugal 14 7336 13-sep-12  Romania 44 14278 22-nov-12 Sweden 36 22421 11-may-12 Slovenia 1621 123 30-aug-12 Slovak Republic 2455 United Kingdom 62 12252 EU 739 270260 407

62 Graph 2- Average time spent per point by country (in min).

63 Graph 1: Average number of points surveyed per surveyor by country

64 Table 10: Number of surveyed points by countries and type of observation
Country points Total % of observed points observed in field PI Ex ante PI Austria 5801 657 9 6467 89,70 Belgium 2290 156 2446 93,62  Bulgaria 6152 490 6642 92,62  Cyprus 1251 137 54 1442 86,75 Czech Republic 5449 65 5514 98,82 Germany 24229 714 24943 97,14 Denmark 3276 168 3444 95,12 Estonia 1911 291 2202 86,78  Greece 6798 828 202 7828 86,84 Spain 32290 3087 35377 91,27 Finland 11350 2132 13482 84,19 France 35290 3048 38338 92,05 Hungary 4467 170 4637 96,33 Ireland 2866 618 3484 82,26 Italy 17805 3189 19 21013 84,73  Lithuania 3729 160 3889 95,89 Luxembourg 214 1 215 99,53  Latvia 3644 776 4420 82,44  Malta 74 5 79 93,67 Netherlands 2111 118 2229 94,71 Poland 20496 1310 21806 93,99 Portugal 6835 501 7336 93,17  Romania 11131 3147 14278 77,96 Sweden 20041 2380 22421 89,38 Slovenia 1463 35 123 1621 90,25 Slovak Republic 2205 250 2455 89,82 United Kingdom 10423 1829 12252 85,07 EU 243591 26262 407 270260 90,13 The percentage of the directly observed points is about 75%; it ranges from about 61 % to 99%

65 points Total % of observed points observed missing in field PI Ex ante PI LUCAS 2009 174749 179 29875 29742 234545 74,51 LUCAS 2012 243591  - 26262 407 270260 90,13

66 Table 17: Rate of checked points by country.
total points Visually Controlled % First rejected points Austria 6467 2047 31,7 224 3,5 Belgium 2446 620 25,3 238 9,7  Bulgaria 6642 2857 43,0 840 12,6  Cyprus 1442 494 34,3 60 4,2 Czech Republic 5514 1396 105 1,9 Germany 24943 6618 26,5 1652 6,6 Denmark 3444 1293 37,5 221 6,4 Estonia 2202 1093 49,6 197 8,9  Greece 7828 3376 43,1 455 5,8 Spain 35377 18144 51,3 3091 8,7 Finland 13482 4601 34,1 543 4,0 France 38338 11717 30,6 2201 5,7 Hungary 4637 1407 30,3 202 4,4 Ireland 3484 1240 35,6 480 13,8 Italy 21013 8249 39,3 1580 7,5  Lithuania 3889 21,6 39 1,0 Luxembourg 215 95 44,2 5 2,3  Latvia 4420 1830 41,4 154  Malta 79 100,0 15 19,0 Netherlands 2229 917 41,1 214 9,6 Poland 21806 6021 27,6 1006 4,6 Portugal 7336 3290 44,8 536 7,3  Romania 14278 5668 39,7 1490 10,4 Sweden 22421 7428 33,1 1699 7,6 Slovenia 1621 631 38,9 54 3,3 Slovak Republic 2455 1112 45,3 265 10,8 United Kingdom 12252 4795 39,1 1370 11,2 EU 270260 97858 36,2 18936 7,0

67 Check by external company
At the end of 2013, on points belonging to the 2009 and 2012 LUCAS campaigns. 24% of the checked points were corrected for positional errors and 51% for classification errors. Among this last group, 5% were corrected for both type of errors. Positional errors were mainly attributed to the use of different ortho-photos in 2009 and 2012. For both 2009 and 2012 data the main corrections on the classifications regards the following land cover classes: artificial land; woodland; grassland; shrub land.

68

69 E shrubland C cropland A artificial land

70 Table 24: Distance of observation of the points by country
class of distance (meters) Average distance Median distance % of points with distance >100 0 -3 4-50 >100 Total (meters) % Austria 4083 1436 180 102 5801 11,0 2 1,76 Belgium 1385 772 74 59 2290 12,7 2,58  Bulgaria 4407 876 298 571 6152 30,0 1 9,28  Cyprus 926 247 35 43 1251 12,9 3,44 Czech Republic 4457 799 91 5449 7,7 1,87 Germany 14698 6775 1364 1392 24229 23,6 5,75 Denmark 1821 886 266 303 3276 30,6 9,25 Estonia 1277 460 67 107 1911 23,4 5,60  Greece 4065 1449 467 817 6798 50,7 12,02 Spain 26155 3577 990 1568 32290 19,8 4,86 Finland 7871 1924 421 1134 11350 67,7 9,99 France 24265 8773 975 35290 2,76 Hungary 3603 550 139 175 4467 16,0 3,92 Ireland 1121 1122 259 364 2866 42,3 7 12,70 Italy 5912 8529 1431 1933 17805 43,6 10,86  Lithuania 3308 306 57 58 3729 7,2 1,56 Luxembourg 155 214 4,6 0,00  Latvia 2841 590 89 124 3644 14,9 3,40  Malta 6 65 14,1 10 1,35 Netherlands 1264 468 166 213 2111 29,4 10,09 Poland 12686 5472 994 1344 20496 25,4 6,56 Portugal 4857 1167 221 205 6450 3,18  Romania 9366 1291 253 11131 10,0 2,27 Sweden 11263 6744 552 1482 20041 30,3 3 7,39 Slovenia 914 514 21 14 1463 6,6 0,96 Slovak Republic 1874 245 33 53 2205 10,3 2,40 United Kingdom 4770 3717 744 1192 10423 47,4 4 11,44 EU 159350 58811 10461 14584 243206 25,8 6,00

71 Class of distance (meters) average distance Median distance
land cover Class of distance (meters) average distance Median distance % of points with distance >100 0 -3 4-50 >100 Total (meters) % Artificial land 5635 5505 429 194 11763 13,7 4 1,65 Cropland 50885 13889 4188 4969 73931 22,3 1 6,72 Woodland 50433 23583 2172 2425 78613 14,5 2 3,08 Shrub land 8029 2895 625 1084 12633 35,6 8,58 Grassland 40022 10080 1836 2179 54117 15,6 4,03 Bare land 3101 435 88 161 3785 17,1 4,25 Water areas 286 1788 928 3262 6264 287,8 111 52,08 Wetland 959 636 195 310 2100 50,4 4.5 14,76 159350 58811 10461 14584 243206 25,8 6,00

72 COUNTRY POINTS Visually Controlled % First rejected points Austria 6467 2047 31,7 224 3,5 Belgium 2446 620 25,3 238 9,7 Bulgaria 6642 2857 43,0 840 12,6 Cyprus 1442 494 34,3 60 4,2 Czech Republic 5514 1396 105 1,9 Germany 24943 6618 26,5 1652 6,6 Denmark 3444 1293 37,5 221 6,4 Estonia 2202 1093 49,6 197 8,9 Greece 7828 3376 43,1 455 5,8 Spain 35377 18144 51,3 3091 8,7 Finland 13482 4601 34,1 543 4,0 France 38338 11717 30,6 2201 5,7 Hungary 4637 1407 30,3 202 4,4 Ireland 3484 1240 35,6 480 13,8 Italy 21013 8249 39,3 1580 7,5 Lithuania 3889 21,6 39 1,0 Luxembourg 215 95 44,2 5 2,3 Latvia 4420 1830 41,4 154 Malta 79 100,0 15 19,0 Netherlands 2229 917 41,1 214 9,6 Poland 21806 6021 27,6 1006 4,6 Portugal 7336 3290 44,8 536 7,3 Romania 14278 5668 39,7 1490 10,4 Sweden 22421 7428 33,1 1699 7,6 Slovenia 1621 631 38,9 54 3,3 Slovak Republic 2455 1112 45,3 265 10,8 United Kingdom 12252 4795 39,1 1370 11,2 EU 270260 97858 36,2 18936 7,0


Download ppt "Some considerations on LUCAS"

Similar presentations


Ads by Google