Download presentation
Presentation is loading. Please wait.
Published byΤρυφωσα Κρεστενίτης Modified over 6 years ago
1
Chapter 20 Opener Immune complexity in an invertebrate
Evolution-2e-Chapter-20-Opener.jpg
2
Figure 20.1 Continual acquisition of microRNA families through metazoan evolution
Evolution-2e-Fig jpg
3
Figure 20.2 Phylogenetic distribution of introns
Evolution-2e-Fig jpg
4
Figure 20.2 Phylogenetic distribution of introns (Part 1)
Evolution-2e-Fig jpg
5
Figure 20.2 Phylogenetic distribution of introns (Part 2)
Evolution-2e-Fig jpg
6
Figure 20.3 Conservation and evolution of a novel SINE in vertebrates
Evolution-2e-Fig jpg
7
Figure 20.3 Conservation and evolution of a novel SINE in vertebrates (Part 1)
Evolution-2e-Fig jpg
8
Figure 20.3 Conservation and evolution of a novel SINE in vertebrates (Part 2)
Evolution-2e-Fig jpg
9
Figure 20.4 Age distribution of retroelements in the human genome
Evolution-2e-Fig jpg
10
Figure Immune receptor molecules in the genome of the purple sea urchin (Strongylocentrotus purpuratus) Evolution-2e-Fig jpg
11
Figure 20.6 Extent of codon bias in 12 Drosophila species
Evolution-2e-Fig jpg
12
Figure 20.6 Extent of codon bias in 12 Drosophila species
Evolution-2e-Fig R.jpg
13
Figure Relative rates of nonsynonymous substitution in protein-coding genes of the 12 Drosophila species with fully sequenced genomes Evolution-2e-Fig jpg
14
Figure A gene tree for lysozyme provides phylogenetic evidence for molecular convergence in primate, ruminant, and avian lysozymes Evolution-2e-Fig jpg
15
Figure Phylogenetic evidence for lateral gene transfer (LGT) from Archaea to the eukaryotic protist Entamoeba histolytica Evolution-2e-Fig jpg
16
Figure Phylogenetic evidence for lateral gene transfer (LGT) from Archaea to the eukaryotic protist Entamoeba histolytica Evolution-2e-Fig R.jpg
17
Figure A polytene chromosome of Drosophila ananassae (red) with evidence of integration of a laterally transferred gene from the intracellular symbiont Wolbachia (green) Evolution-2e-Fig jpg
18
Figure 20.11 Origin of a new yeast gene from noncoding DNA
Evolution-2e-Fig jpg
19
Figure 20.12 Evolution and conservation of domains in diverse proteins
Evolution-2e-Fig jpg
20
Figure 20.13 Protein domains bind antigens in human immunoglobulin
Evolution-2e-Fig jpg
21
Figure 20.13 Protein domains bind antigens in human immunoglobulin (Part 1)
Evolution-2e-Fig jpg
22
Figure 20.13 Protein domains bind antigens in human immunoglobulin (Part 2)
Evolution-2e-Fig jpg
23
Figure Origin of a new Drosophila gene, jingwei, via retrotransposition of a pre-existing gene into an intron of Ymp (yellow-emperor) to recruit new exons Evolution-2e-Fig jpg
24
Figure 20.15 The evolution of AFGP genes of Antarctic notothenioid fishes
Evolution-2e-Fig jpg
25
Figure 20.15 The evolution of AFGP genes of Antarctic notothenioid fishes (Part 1)
Evolution-2e-Fig jpg
26
Figure 20.15 The evolution of AFGP genes of Antarctic notothenioid fishes (Part 2)
Evolution-2e-Fig jpg
27
Figure 20.16 Amplification of the DUF1220 domain in the human lineage
Evolution-2e-Fig jpg
28
Figure 20.16 Amplification of the DUF1220 domain in the human lineage (Part 1)
Evolution-2e-Fig jpg
29
Figure 20.16 Amplification of the DUF1220 domain in the human lineage (Part 2)
Evolution-2e-Fig jpg
30
Figure 20.17 Distribution of the number of paralogs in the complete genomes of five species of yeast
Evolution-2e-Fig jpg
31
Figure Ancient origin of cadherin genes as revealed in the genome of the choanoflagellate Monosiga brevicollis Evolution-2e-Fig jpg
32
Figure Ancient origin of cadherin genes as revealed in the genome of the choanoflagellate Monosiga brevicollis (Part 1) Evolution-2e-Fig jpg
33
Figure Ancient origin of cadherin genes as revealed in the genome of the choanoflagellate Monosiga brevicollis (Part 2) Evolution-2e-Fig jpg
34
Figure 20.19 Use of age distribution of gene duplication events to infer whole-genome duplications
Evolution-2e-Fig jpg
35
Figure 20.20 Block duplication
Evolution-2e-Fig jpg
36
Figure 20.20 Block duplication
Evolution-2e-Fig R.jpg
37
Figure 20.21 Evolution of species-specific differences in coevolving lysin and VERL proteins
Evolution-2e-Fig jpg
38
Figure Evolution of species-specific differences in coevolving lysin and VERL proteins (Part 1) Evolution-2e-Fig jpg
39
Figure Evolution of species-specific differences in coevolving lysin and VERL proteins (Part 2) Evolution-2e-Fig jpg
40
Figure Evidence for localized gene conversion and concerted evolution in the primate globin gene family Evolution-2e-Fig jpg
41
Figure Phylogenetic consequences of duplication, speciation, and gene conversion in gene families Evolution-2e-Fig jpg
42
Figure 20.24 The DDC model of gene duplication as illustrated by Hox genes
Evolution-2e-Fig jpg
43
Figure 20.24 The DDC model of gene duplication as illustrated by Hox genes (Part 1)
Evolution-2e-Fig jpg
44
Figure 20.24 The DDC model of gene duplication as illustrated by Hox genes (Part 2)
Evolution-2e-Fig jpg
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.