Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 20 Opener Immune complexity in an invertebrate

Similar presentations


Presentation on theme: "Chapter 20 Opener Immune complexity in an invertebrate"— Presentation transcript:

1 Chapter 20 Opener Immune complexity in an invertebrate
Evolution-2e-Chapter-20-Opener.jpg

2 Figure 20.1 Continual acquisition of microRNA families through metazoan evolution
Evolution-2e-Fig jpg

3 Figure 20.2 Phylogenetic distribution of introns
Evolution-2e-Fig jpg

4 Figure 20.2 Phylogenetic distribution of introns (Part 1)
Evolution-2e-Fig jpg

5 Figure 20.2 Phylogenetic distribution of introns (Part 2)
Evolution-2e-Fig jpg

6 Figure 20.3 Conservation and evolution of a novel SINE in vertebrates
Evolution-2e-Fig jpg

7 Figure 20.3 Conservation and evolution of a novel SINE in vertebrates (Part 1)
Evolution-2e-Fig jpg

8 Figure 20.3 Conservation and evolution of a novel SINE in vertebrates (Part 2)
Evolution-2e-Fig jpg

9 Figure 20.4 Age distribution of retroelements in the human genome
Evolution-2e-Fig jpg

10 Figure Immune receptor molecules in the genome of the purple sea urchin (Strongylocentrotus purpuratus) Evolution-2e-Fig jpg

11 Figure 20.6 Extent of codon bias in 12 Drosophila species
Evolution-2e-Fig jpg

12 Figure 20.6 Extent of codon bias in 12 Drosophila species
Evolution-2e-Fig R.jpg

13 Figure Relative rates of nonsynonymous substitution in protein-coding genes of the 12 Drosophila species with fully sequenced genomes Evolution-2e-Fig jpg

14 Figure A gene tree for lysozyme provides phylogenetic evidence for molecular convergence in primate, ruminant, and avian lysozymes Evolution-2e-Fig jpg

15 Figure Phylogenetic evidence for lateral gene transfer (LGT) from Archaea to the eukaryotic protist Entamoeba histolytica Evolution-2e-Fig jpg

16 Figure Phylogenetic evidence for lateral gene transfer (LGT) from Archaea to the eukaryotic protist Entamoeba histolytica Evolution-2e-Fig R.jpg

17 Figure A polytene chromosome of Drosophila ananassae (red) with evidence of integration of a laterally transferred gene from the intracellular symbiont Wolbachia (green) Evolution-2e-Fig jpg

18 Figure 20.11 Origin of a new yeast gene from noncoding DNA
Evolution-2e-Fig jpg

19 Figure 20.12 Evolution and conservation of domains in diverse proteins
Evolution-2e-Fig jpg

20 Figure 20.13 Protein domains bind antigens in human immunoglobulin
Evolution-2e-Fig jpg

21 Figure 20.13 Protein domains bind antigens in human immunoglobulin (Part 1)
Evolution-2e-Fig jpg

22 Figure 20.13 Protein domains bind antigens in human immunoglobulin (Part 2)
Evolution-2e-Fig jpg

23 Figure Origin of a new Drosophila gene, jingwei, via retrotransposition of a pre-existing gene into an intron of Ymp (yellow-emperor) to recruit new exons Evolution-2e-Fig jpg

24 Figure 20.15 The evolution of AFGP genes of Antarctic notothenioid fishes
Evolution-2e-Fig jpg

25 Figure 20.15 The evolution of AFGP genes of Antarctic notothenioid fishes (Part 1)
Evolution-2e-Fig jpg

26 Figure 20.15 The evolution of AFGP genes of Antarctic notothenioid fishes (Part 2)
Evolution-2e-Fig jpg

27 Figure 20.16 Amplification of the DUF1220 domain in the human lineage
Evolution-2e-Fig jpg

28 Figure 20.16 Amplification of the DUF1220 domain in the human lineage (Part 1)
Evolution-2e-Fig jpg

29 Figure 20.16 Amplification of the DUF1220 domain in the human lineage (Part 2)
Evolution-2e-Fig jpg

30 Figure 20.17 Distribution of the number of paralogs in the complete genomes of five species of yeast
Evolution-2e-Fig jpg

31 Figure Ancient origin of cadherin genes as revealed in the genome of the choanoflagellate Monosiga brevicollis Evolution-2e-Fig jpg

32 Figure Ancient origin of cadherin genes as revealed in the genome of the choanoflagellate Monosiga brevicollis (Part 1) Evolution-2e-Fig jpg

33 Figure Ancient origin of cadherin genes as revealed in the genome of the choanoflagellate Monosiga brevicollis (Part 2) Evolution-2e-Fig jpg

34 Figure 20.19 Use of age distribution of gene duplication events to infer whole-genome duplications
Evolution-2e-Fig jpg

35 Figure 20.20 Block duplication
Evolution-2e-Fig jpg

36 Figure 20.20 Block duplication
Evolution-2e-Fig R.jpg

37 Figure 20.21 Evolution of species-specific differences in coevolving lysin and VERL proteins
Evolution-2e-Fig jpg

38 Figure Evolution of species-specific differences in coevolving lysin and VERL proteins (Part 1) Evolution-2e-Fig jpg

39 Figure Evolution of species-specific differences in coevolving lysin and VERL proteins (Part 2) Evolution-2e-Fig jpg

40 Figure Evidence for localized gene conversion and concerted evolution in the primate globin gene family Evolution-2e-Fig jpg

41 Figure Phylogenetic consequences of duplication, speciation, and gene conversion in gene families Evolution-2e-Fig jpg

42 Figure 20.24 The DDC model of gene duplication as illustrated by Hox genes
Evolution-2e-Fig jpg

43 Figure 20.24 The DDC model of gene duplication as illustrated by Hox genes (Part 1)
Evolution-2e-Fig jpg

44 Figure 20.24 The DDC model of gene duplication as illustrated by Hox genes (Part 2)
Evolution-2e-Fig jpg


Download ppt "Chapter 20 Opener Immune complexity in an invertebrate"

Similar presentations


Ads by Google