Download presentation
Presentation is loading. Please wait.
1
IGCSE Further Maths/C1 Inequalities
Dr J Frost Objectives: Be able to solve both linear and quadratic inequalities. Be able to manipulate inequalities (including squared terms). Last modified: 20th March 2016
2
RECAP :: Linear Inequalities
Bromonology: Remember that βlinearβ just means that if we plotted the equation/inequality weβd end up with a straight line/region bounded by a straight line. Jan 2013 Paper 2 Solve 5πβ3>π+17 ? π>5 June 2012 Paper 1 Work out the greatest integer value of π₯ that satisfies the inequality 3π₯+10<1 ? π₯<β3 Thus greatest integer is -4. Solve 5<3π₯β1β€17 π<ππβ€ππ π<πβ€π ?
3
π π Manipulating Inequalities β3β€π₯β€2 πβ€ π π β€π ? ? ?
What is the smallest value of π₯ 2 ? π What is the largest value of π₯ 2 ? π Hence determine an inequality for π₯ 2 . πβ€ π π β€π ? ? ?
4
Test Your Understanding
? ? β1β€π₯β€ β β€ π₯ 2 β€16 β3β€π₯<β β < π₯ 2 β€9 β10β€π₯< β β€ π₯ 2 β€100 ? ? ? ? June 2012 Paper 1 1β€πβ€5 and β9β€πβ€2 (a) Work out an inequality for π+π. βπβ€π+πβ€π (b) Work out an inequality for π+π 2 πβ€ π+π π β€ππ ? ? ? ?
5
Further Example ? ? ? Whatβs the least πβπ can be? πβπ=βπ
Given that 1β€πβ€4 and β3β€πβ€2, work out an inequality for πβπ. Whatβs the least πβπ can be? πβπ=βπ Whatβs the greatest πβπ can be? πββπ=π Thus inequality for πβπ: βπβ€πβπβ€π ? ? ?
6
Exercise 1 1 Solve the following: 5+3π₯β₯ πβ₯π 6π¦+1β€4π¦ πβ€π πβ3β€5π πβ₯βπ 2π₯β3 3 < π<ππ 5β3π₯ 4 β€ πβ₯βπ 2β4π₯ 3 β₯ πβ€βπ 4β€5π₯β6β€ πβ€πβ€π 5<7β2π₯< βπ<π<π 5>9β4π₯> π<π<π Given that 0β€πβ€3 and 2β€πβ€5, work out the inequality for πβπ. βπβ€πβπ<π Given that 1β€πβ€6 and β3β€πβ€3 work out inequalities for: βπβ€π+πβ€π βπβ€πβπβ€π 4 Given 0<π₯<1 and π¦>0, decide whether the following statements are ALWAYS TRUE< SOMETIMES TRUE, or NEVER TRUE. 1 π₯ > Always true π₯+π¦< Never true π₯π¦> Sometimes true. π₯ 2 > Never true. π₯βπ¦<0 Sometimes true. [June 2013 Paper 2] π€ is an integer such that 6β€3π€<18. π₯ is an integer such that β4β€π₯β€3. What is the highest possible value of π₯ What is the lowest possible value of π€βπ₯. -1 Given that β1<π<2 state a value of π for which: π 2 >1 e.g. 1.5 1 π >1 e.g. 0.5 1βπ>1 e.g. -0.5 a ? b ? ? c ? a b ? d ? c ? ? d ? e e ? ? f 5 ? g ? h ? ? i ? 6 2 a ? b ? ? c ? 3 ? ? ? ?
7
Quadratic Inequalities
Solve π₯ 2 β4π₯β5<0 π₯ 2 β4π₯β5<0 π₯+1 π₯β5 <0 ! Step 1: Get 0 on one side. Step 2 ? ! Step 2: Factorise. ! Step 3: Sketch π¦=πΏπ»π. Step 3 ? π¦ π¦= π₯+1 π₯β5 ! Step 4: Identify parts of line where π¦ value (i.e. LHS of inequality) satisfies inequality. π₯ -1 5 Since π¦= π₯+1 π₯β5 <0, weβre interested in the parts of the line where π¦<0. Therefore: βπ<π<π Step 4? ?
8
Quadratic Inequalities
Solve π₯ 2 β4π₯β5>0 Now suppose we changed < for >β¦ π₯ 2 β4π₯β5>0 π₯+1 π₯β5 >0 ! Step 1: Get 0 on one side. ! Step 2: Factorise. ! Step 3: Sketch π¦=πΏπ»π. π¦ π¦= π₯+1 π₯β5 ! Step 4: Identify parts of line where π¦ value (i.e. LHS of inequality) satisfies inequality. π₯ -1 5 Since π¦= π₯+1 π₯β5 >0, weβre interested in the parts of the line where π¦>0. Therefore: π<βπ or π>π Step 4?
9
Test Your Understanding
Solve π₯ 2 +π₯β6β€0 Solve 2π₯+ π₯ 2 >3 ? ? π₯+3 π₯β2 β€0 π₯ 2 +2π₯β3>0 π₯+3 π₯β1 >0 π¦ π¦ π₯ -3 2 π₯ -3 1 βπβ€πβ€π (note that β€ has to be consistent with original question) π<βπ or π>π
10
Exercise 2 ? ? ? ? ? ? ? ? ? ? ? 1 Solve the following inequalities:
(ii) π 2 +3πβ4β€0 βπβ€πβ€π (iii) 2 π¦ 2 +π¦β3<0 β π π <π<π (iv) 4β π¦ 2 β₯0 βπβ€πβ€π (v) π₯ 2 β4π₯+4>0 π<π ππ π>π (vi) π 2 β3πβ€β2 πβ€πβ€π (vii) π+2 πβ1 >4 π<βπ ππ π>π (viii) 8β2πβ₯ π 2 βπβ€πβ€π (ix) 3 π¦ 2 +2π¦β1>0 π<βπ ππ π> π π (x) π¦ 2 β₯4π¦+5 πβ€βπ ππ πβ₯π The area of the square is less than the area of the rectangle. Work out an inequality for π₯. ? ? ? ? ? ? ? ? ? ? 2 π₯+1 ? 2π₯β1 π+π π+π < ππβπ πβπ π π +ππ+π<π π π βππ+π π π βππ>π π πβπ >π π<π ππ π>π (but clearly π canβt be less than 0) π₯+1 π₯β1
11
C1 Discriminants We now (hopefully!) have the sufficient skills to tackle more questions concerning discriminants: Edexcel C1 Jan 2013 a ? π+3 π₯ 2 +6π₯+ πβ5 =0 π=π π= π=πβ5 Discriminant: 36β4 π+3 πβ5 >0 36β4 π 2 β2πβ15 >0 36β4 π 2 +8π+60>0 4 π 2 β8πβ96<0 π 2 β2πβ24<0 π+4 πβ6 <0 After sketching: β4<π<6 ? Reminder: No solutions: π 2 β4ππ<0 Equal solutions: π 2 β4ππ=0 Distinct solutions: π 2 β4ππ>0 ? b ? ? ?
12
Test Your Understanding
Edexcel C1 Jan 2011 ? ?
13
Combining Inequalities
Edexcel C1 June 2009 π₯>2 β 3 2 <π₯<4 c) It may help to draw number lines for both and combine. Otherwise use common sense! π<π<π ?
14
Exercise 3 Edexcel C1 Jan 2009 Q7 ? ? Edexcel C1 Jan Q10
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.