Presentation is loading. Please wait.

Presentation is loading. Please wait.

1.1 โ€“ Limits: A Numerical and Graphical Approach

Similar presentations


Presentation on theme: "1.1 โ€“ Limits: A Numerical and Graphical Approach"โ€” Presentation transcript:

1 1.1 โ€“ Limits: A Numerical and Graphical Approach
Function Review ๐‘“ ๐‘ฅ =2๐‘ฅโˆ’7 ๐‘“ ๐‘ฅ =2๐‘ฅโˆ’7 ๐‘“ 3 = ? ๐‘“ โˆ’5 = ? ๐‘“ 3 =6โˆ’7 ๐‘“ โˆ’5 =2 โˆ’5 โˆ’7 ๐‘“ 3 =2 3 โˆ’7 ๐‘“ โˆ’5 =โˆ’10โˆ’7 ๐‘“ 3 =โˆ’1 ๐‘“ โˆ’5 =โˆ’17 3,โˆ’1 โˆ’5, โˆ’17

2 1.1 โ€“ Limits: A Numerical and Graphical Approach
Function Review ๐‘“ ๐‘ฅ = ๐‘ฅ 2 +2๐‘ฅโˆ’7 ๐‘“ โˆ’7 = ? ๐‘“ โˆ’7 = โˆ’ โˆ’7 โˆ’7 ๐‘“ โˆ’7 =49โˆ’14โˆ’7 ๐‘“ โˆ’7 =28 โˆ’7, 28

3 1.1 โ€“ Limits: A Numerical and Graphical Approach
Defn: Limit As the variable x approaches a certain value, the variable y approaches a certain value. lim ๐‘ฅโ†’๐‘ ๐‘“ ๐‘ฅ =๐ฟ Find the requested limits from the graph of the given function. lim ๐‘ฅโ†’2 ๐‘“ ๐‘ฅ = 3

4 1.1 โ€“ Limits: A Numerical and Graphical Approach
Defn: Limit As the variable x approaches a certain value, the variable y approaches a certain value. lim ๐‘ฅโ†’๐‘ ๐‘“ ๐‘ฅ =๐ฟ Find the requested limit of the given function. ๐‘“ ๐‘ฅ = ๐‘ฅ 2 โˆ’1 ๐’™ ๐’‡ ๐’™ 1.9 2.61 lim ๐‘ฅโ†’2 ๐‘“ ๐‘ฅ 1.99 2.9601 1.999 2.9960 lim ๐‘ฅโ†’2 ๐‘“ ๐‘ฅ = 3 2 ? 2.001 3.0040 2.01 3.0401 2.1 3.41

5 1.1 โ€“ Limits: A Numerical and Graphical Approach
Find the requested limits for the given function. ๐‘“ ๐‘ฅ = ๐‘ฅ 2 โˆ’1 lim ๐‘ฅโ†’โˆ’1 ๐‘“ ๐‘ฅ = โˆ’1 2 โˆ’1= lim ๐‘ฅโ†’0 ๐‘“ ๐‘ฅ = 0 2 โˆ’1= โˆ’1 lim ๐‘ฅโ†’2 ๐‘“ ๐‘ฅ = 2 2 โˆ’1= 3

6 1.1 โ€“ Limits: A Numerical and Graphical Approach
Given the following graph of a function, find the requested limit. lim ๐‘ฅโ†’2 ๐‘” ๐‘ฅ = 4 ๐‘” 2 = 6 2,6

7 1.1 โ€“ Limits: A Numerical and Graphical Approach
Given the following graph of a function, find the requested limits. lim ๐‘ฅโ†’0 ๐‘“ ๐‘ฅ = 2 ๐‘“ 0 = 2 0,2 lim ๐‘ฅโ†’โˆ’1 ๐‘“ ๐‘ฅ = ๐ท๐‘๐ธ ๐‘“ โˆ’1 = 2 โˆ’1,2 lim ๐‘ฅโ†’1 ๐‘“ ๐‘ฅ = 2 ๐‘“ 1 = 3 1,3 lim ๐‘ฅโ†’2 ๐‘“ ๐‘ฅ = ๐ท๐‘๐ธ ๐‘“ 2 = 3 2,3

8 1.1 โ€“ Limits: A Numerical and Graphical Approach
A limit of a function can be analyzed from the left and right sides of a particular value of x. lim ๐‘ฅโ†’ 2 โˆ’ ๐‘” ๐‘ฅ = 4 lim ๐‘ฅโ†’ ๐‘” ๐‘ฅ = 4 therefore lim ๐‘ฅโ†’2 ๐‘” ๐‘ฅ = 4

9 1.1 โ€“ Limits: A Numerical and Graphical Approach
A limit of a function can be analyzed from the left and right sides of a particular value of x. lim ๐‘ฅโ†’ 1 โˆ’ ๐‘“ ๐‘ฅ = 2 lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = 2 โˆด lim ๐‘ฅโ†’1 ๐‘“ ๐‘ฅ = 2 lim ๐‘ฅโ†’ โˆ’1 โˆ’ ๐‘“ ๐‘ฅ = 1 lim ๐‘ฅโ†’ โˆ’1 + ๐‘“ ๐‘ฅ = 2 โˆด lim ๐‘ฅโ†’โˆ’1 ๐‘“ ๐‘ฅ = ๐ท๐‘œ๐‘’๐‘  ๐‘›๐‘œ๐‘ก ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก (๐ท๐‘๐ธ)

10 1.1 โ€“ Limits: A Numerical and Graphical Approach
Given the graph of a function, find the requested limits. lim ๐‘ฅโ†’ โˆ’3 โˆ’ ๐‘“ ๐‘ฅ = 3 lim ๐‘ฅโ†’ โˆ’3 + ๐‘“ ๐‘ฅ = โˆ’1 lim ๐‘ฅโ†’โˆ’3 ๐‘“ ๐‘ฅ = ๐ท๐‘๐ธ ๐‘“ โˆ’3 = 1 lim ๐‘ฅโ†’ 0 โˆ’ ๐‘“ ๐‘ฅ = 2 lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = 2 lim ๐‘ฅโ†’0 ๐‘“ ๐‘ฅ = ๐‘“ 0 = 2 2 lim ๐‘ฅโ†’ 2 โˆ’ ๐‘“ ๐‘ฅ = 6 lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = โˆ’1 lim ๐‘ฅโ†’2 ๐‘“ ๐‘ฅ = ๐ท๐‘๐ธ ๐‘“ 2 = 6 lim ๐‘ฅโ†’ 3 โˆ’ ๐‘“ ๐‘ฅ = 2 lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = โˆ’4 lim ๐‘ฅโ†’3 ๐‘“ ๐‘ฅ = ๐‘“ 3 = ๐ท๐‘๐ธ 2

11 1.1 โ€“ Limits: A Numerical and Graphical Approach
Given the graph of a function, find the requested limits. lim ๐‘ฅโ†’ โˆ’3 โˆ’ ๐‘“ ๐‘ฅ = โˆ’1 lim ๐‘ฅโ†’ โˆ’3 + ๐‘“ ๐‘ฅ = โˆ’2 lim ๐‘ฅโ†’โˆ’3 ๐‘“ ๐‘ฅ = ๐ท๐‘๐ธ ๐‘“ โˆ’3 = โˆ’1 lim ๐‘ฅโ†’ 0 โˆ’ ๐‘“ ๐‘ฅ = 2 lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = 2 lim ๐‘ฅโ†’0 ๐‘“ ๐‘ฅ = ๐‘“ 0 = 2 2 lim ๐‘ฅโ†’ 1 โˆ’ ๐‘“ ๐‘ฅ = 1 lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = โˆ’3 lim ๐‘ฅโ†’1 ๐‘“ ๐‘ฅ = ๐ท๐‘๐ธ ๐‘“ 1 = โˆ’3 lim ๐‘ฅโ†’ 2 โˆ’ ๐‘“ ๐‘ฅ = โˆ’1 lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = โˆ’3 lim ๐‘ฅโ†’2 ๐‘“ ๐‘ฅ = ๐‘“ 2 = ๐ท๐‘๐ธ โˆ’3

12 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Graphically lim ๐‘ฅโ†’โˆž ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’โˆž ๐‘” ๐‘ฅ = โˆž โˆž lim ๐‘ฅโ†’โˆ’โˆž ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’โˆ’โˆž ๐‘” ๐‘ฅ = โˆž โˆ’โˆž

13 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Graphically lim ๐‘ฅโ†’ 1 โˆ’ ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’โˆž ๐‘” ๐‘ฅ = โˆ’โˆž lim ๐‘ฅโ†’โˆž ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’ 0 โˆ’ ๐‘“ ๐‘ฅ = 1 โˆ’โˆž lim ๐‘ฅโ†’โˆ’โˆž ๐‘” ๐‘ฅ = lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = โˆž โˆ’1 lim ๐‘ฅโ†’โˆ’โˆž ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = โˆž

14 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Graphically ๐‘“ ๐‘ฅ = 1 ๐‘ฅโˆ’1 lim ๐‘ฅโ†’โˆž 1 ๐‘ฅโˆ’1 = lim ๐‘ฅโ†’โˆ’โˆž 1 ๐‘ฅโˆ’1 = lim ๐‘ฅโ†’ ๐‘ฅโˆ’1 = โˆž lim ๐‘ฅโ†’ 1 โˆ’ 1 ๐‘ฅโˆ’1 = โˆ’โˆž lim ๐‘ฅโ†’1 1 ๐‘ฅโˆ’1 = ๐ท๐‘๐ธ

15 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐‘“ ๐‘ฅ = 1 ๐‘ฅโˆ’1 ๐‘“ 10 = 1 10โˆ’1 =0.111 ๐‘“ 100 = 1 100โˆ’1 =0.0101 ๐‘“ 1000 = โˆ’1 = lim ๐‘ฅโ†’โˆž 1 ๐‘ฅโˆ’1 =0

16 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐‘“ ๐‘ฅ = 1 ๐‘ฅโˆ’1 ๐‘“ โˆ’10 = 1 โˆ’10โˆ’1 =โˆ’0.0909 ๐‘“ โˆ’100 = 1 โˆ’100โˆ’1 =โˆ’0.0099 ๐‘“ โˆ’1000 = 1 โˆ’1000โˆ’1 =โˆ’ lim ๐‘ฅโ†’โˆ’โˆž 1 ๐‘ฅโˆ’1 =0

17 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐‘“ ๐‘ฅ = 1 ๐‘ฅโˆ’1 ๐‘“ 1.01 = โˆ’1 =100 ๐‘“ = โˆ’1 =1000 ๐‘“ = 1 โˆ’1000โˆ’1 =10000 lim ๐‘ฅโ†’ ๐‘ฅโˆ’1 =โˆž

18 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐‘“ ๐‘ฅ = 1 ๐‘ฅโˆ’1 ๐‘“ 0.9 = 1 0.9โˆ’1 =โˆ’10 ๐‘“ .99 = โˆ’1 =โˆ’100 ๐‘“ = โˆ’1 =โˆ’1000 lim ๐‘ฅโ†’ 1 โˆ’ 1 ๐‘ฅโˆ’1 =โˆ’โˆž

19 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Graphically ๐‘“ ๐‘ฅ = โˆ’1 ๐‘ฅ+4 +3 lim ๐‘ฅโ†’โˆž โˆ’1 ๐‘ฅ+4 +3= 3 lim ๐‘ฅโ†’โˆ’โˆž โˆ’1 ๐‘ฅ+4 +3= 3 lim ๐‘ฅโ†’ โˆ’4 โˆ’ โˆ’1 ๐‘ฅ+4 +3= โˆž lim ๐‘ฅโ†’โˆ’ โˆ’1 ๐‘ฅ+4 +3= โˆ’โˆž lim ๐‘ฅโ†’4 โˆ’1 ๐‘ฅ+4 +3= ๐ท๐‘๐ธ

20 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐‘“ 10 = โˆ’ = ๐‘“ ๐‘ฅ = โˆ’1 ๐‘ฅ+4 +3 ๐‘“ 100 = โˆ’ = ๐‘“ 1000 = โˆ’ = lim ๐‘ฅโ†’โˆž โˆ’1 ๐‘ฅ+4 +3=3

21 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐‘“ โˆ’10 = โˆ’1 โˆ’ = ๐‘“ ๐‘ฅ = โˆ’1 ๐‘ฅ+4 +3 ๐‘“ โˆ’100 = โˆ’1 โˆ’ = ๐‘“ โˆ’1000 = โˆ’1 โˆ’ = lim ๐‘ฅโ†’โˆ’โˆž โˆ’1 ๐‘ฅ+4 +3=3

22 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐‘“ โˆ’4.01 = โˆ’1 โˆ’ =103 ๐‘“ ๐‘ฅ = โˆ’1 ๐‘ฅ+4 +3 ๐‘“ โˆ’4.001 = โˆ’1 โˆ’ =1003 ๐‘“ โˆ’ = โˆ’1 โˆ’ =10003 lim ๐‘ฅโ†’โˆ’ 4 โˆ’ โˆ’1 ๐‘ฅ+4 +3=โˆž

23 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐‘“ โˆ’3.9 = โˆ’1 โˆ’ =โˆ’7 ๐‘“ ๐‘ฅ = โˆ’1 ๐‘ฅ+4 +3 ๐‘“ โˆ’3.99 = โˆ’1 โˆ’ =โˆ’97 ๐‘“ โˆ’3.999 = โˆ’1 โˆ’ =โˆ’997 lim ๐‘ฅโ†’โˆ’ โˆ’1 ๐‘ฅ+4 +3=โˆ’โˆž

24 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Piecewise Functions

25 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Piecewise Functions lim ๐‘ฅโ†’3 ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’โˆ’2 ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’3 2๐‘ฅโˆ’1= lim ๐‘ฅโ†’โˆ’2 โˆ’ ๐‘ฅ 2 +4= lim ๐‘ฅโ†’ โˆ’1= lim ๐‘ฅโ†’โˆ’2 โˆ’ โˆ’ = lim ๐‘ฅโ†’3 ๐‘“ ๐‘ฅ =5 lim ๐‘ฅโ†’โˆ’2 ๐‘“ ๐‘ฅ =0 ๐‘“ ๐‘ฅ = โˆ’ ๐‘ฅ 2 +4 ๐‘ฅ<1 2๐‘ฅโˆ’1 ๐‘ฅโ‰ฅ1 lim ๐‘ฅโ†’1 ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’ 1 โˆ’ ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = 1 โˆ’ ๐‘ฅ 2 +4 2๐‘ฅโˆ’1 lim ๐‘ฅโ†’ 1 โˆ’ โˆ’ ๐‘ฅ 2 +4= lim ๐‘ฅโ†’ ๐‘ฅโˆ’1= lim ๐‘ฅโ†’ 1 โˆ’ ๐‘“ ๐‘ฅ =3 lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ =1 lim ๐‘ฅโ†’1 ๐‘“ ๐‘ฅ = ๐ท๐‘๐ธ

26 1.1 โ€“ Limits: A Numerical and Graphical Approach
Limits Involving Piecewise Functions lim ๐‘ฅโ†’โˆ’2 ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’ โˆ’2 โˆ’ ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’ โˆ’ ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’โˆ’ 2 โˆ’ ๐‘ฅ+3= lim ๐‘ฅโ†’ โˆ’ ๐‘ฅ 2 = lim ๐‘ฅโ†’โˆ’ 2 โˆ’ โˆ’2+3= lim ๐‘ฅโ†’ โˆ’ โˆ’2 2 = lim ๐‘ฅโ†’ โˆ’ ๐‘“ ๐‘ฅ =4 lim ๐‘ฅโ†’โˆ’ 2 โˆ’ ๐‘“ ๐‘ฅ =1 lim ๐‘ฅโ†’โˆ’2 ๐‘“ ๐‘ฅ = ๐ท๐‘๐ธ ๐‘“ ๐‘ฅ = ๐‘ฅ+3 ๐‘ฅ<โˆ’2 ๐‘ฅ 2 โˆ’2โ‰ค๐‘ฅโ‰ค1 โˆ’๐‘ฅ+2 ๐‘ฅ>1 lim ๐‘ฅโ†’1 ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’ 1 โˆ’ ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’ 1 โˆ’ ๐‘ฅ 2 = lim ๐‘ฅโ†’โˆ’ โˆ’๐‘ฅ+2= โˆ’2 1 ๐‘ฅ+3 ๐‘ฅ 2 โˆ’๐‘ฅ+2 lim ๐‘ฅโ†’ 1 โˆ’ = lim ๐‘ฅโ†’ โˆ’ 1 +2= lim ๐‘ฅโ†’ 1 โˆ’ ๐‘“ ๐‘ฅ =1 lim ๐‘ฅโ†’ ๐‘“ ๐‘ฅ =1 lim ๐‘ฅโ†’1 ๐‘“ ๐‘ฅ = 1

27

28 1.1 โ€“ Limits: A Numerical and Graphical Approach


Download ppt "1.1 โ€“ Limits: A Numerical and Graphical Approach"

Similar presentations


Ads by Google