Download presentation
Presentation is loading. Please wait.
Published byแผฮฒฮตฮนฯแฝผฮฝ ฮฮฑฮปฮฑฮผฮฟฮณฮดฮฌฯฯฮทฯ Modified over 6 years ago
1
1.1 โ Limits: A Numerical and Graphical Approach
Function Review ๐ ๐ฅ =2๐ฅโ7 ๐ ๐ฅ =2๐ฅโ7 ๐ 3 = ? ๐ โ5 = ? ๐ 3 =6โ7 ๐ โ5 =2 โ5 โ7 ๐ 3 =2 3 โ7 ๐ โ5 =โ10โ7 ๐ 3 =โ1 ๐ โ5 =โ17 3,โ1 โ5, โ17
2
1.1 โ Limits: A Numerical and Graphical Approach
Function Review ๐ ๐ฅ = ๐ฅ 2 +2๐ฅโ7 ๐ โ7 = ? ๐ โ7 = โ โ7 โ7 ๐ โ7 =49โ14โ7 ๐ โ7 =28 โ7, 28
3
1.1 โ Limits: A Numerical and Graphical Approach
Defn: Limit As the variable x approaches a certain value, the variable y approaches a certain value. lim ๐ฅโ๐ ๐ ๐ฅ =๐ฟ Find the requested limits from the graph of the given function. lim ๐ฅโ2 ๐ ๐ฅ = 3
4
1.1 โ Limits: A Numerical and Graphical Approach
Defn: Limit As the variable x approaches a certain value, the variable y approaches a certain value. lim ๐ฅโ๐ ๐ ๐ฅ =๐ฟ Find the requested limit of the given function. ๐ ๐ฅ = ๐ฅ 2 โ1 ๐ ๐ ๐ 1.9 2.61 lim ๐ฅโ2 ๐ ๐ฅ 1.99 2.9601 1.999 2.9960 lim ๐ฅโ2 ๐ ๐ฅ = 3 2 ? 2.001 3.0040 2.01 3.0401 2.1 3.41
5
1.1 โ Limits: A Numerical and Graphical Approach
Find the requested limits for the given function. ๐ ๐ฅ = ๐ฅ 2 โ1 lim ๐ฅโโ1 ๐ ๐ฅ = โ1 2 โ1= lim ๐ฅโ0 ๐ ๐ฅ = 0 2 โ1= โ1 lim ๐ฅโ2 ๐ ๐ฅ = 2 2 โ1= 3
6
1.1 โ Limits: A Numerical and Graphical Approach
Given the following graph of a function, find the requested limit. lim ๐ฅโ2 ๐ ๐ฅ = 4 ๐ 2 = 6 2,6
7
1.1 โ Limits: A Numerical and Graphical Approach
Given the following graph of a function, find the requested limits. lim ๐ฅโ0 ๐ ๐ฅ = 2 ๐ 0 = 2 0,2 lim ๐ฅโโ1 ๐ ๐ฅ = ๐ท๐๐ธ ๐ โ1 = 2 โ1,2 lim ๐ฅโ1 ๐ ๐ฅ = 2 ๐ 1 = 3 1,3 lim ๐ฅโ2 ๐ ๐ฅ = ๐ท๐๐ธ ๐ 2 = 3 2,3
8
1.1 โ Limits: A Numerical and Graphical Approach
A limit of a function can be analyzed from the left and right sides of a particular value of x. lim ๐ฅโ 2 โ ๐ ๐ฅ = 4 lim ๐ฅโ ๐ ๐ฅ = 4 therefore lim ๐ฅโ2 ๐ ๐ฅ = 4
9
1.1 โ Limits: A Numerical and Graphical Approach
A limit of a function can be analyzed from the left and right sides of a particular value of x. lim ๐ฅโ 1 โ ๐ ๐ฅ = 2 lim ๐ฅโ ๐ ๐ฅ = 2 โด lim ๐ฅโ1 ๐ ๐ฅ = 2 lim ๐ฅโ โ1 โ ๐ ๐ฅ = 1 lim ๐ฅโ โ1 + ๐ ๐ฅ = 2 โด lim ๐ฅโโ1 ๐ ๐ฅ = ๐ท๐๐๐ ๐๐๐ก ๐๐ฅ๐๐ ๐ก (๐ท๐๐ธ)
10
1.1 โ Limits: A Numerical and Graphical Approach
Given the graph of a function, find the requested limits. lim ๐ฅโ โ3 โ ๐ ๐ฅ = 3 lim ๐ฅโ โ3 + ๐ ๐ฅ = โ1 lim ๐ฅโโ3 ๐ ๐ฅ = ๐ท๐๐ธ ๐ โ3 = 1 lim ๐ฅโ 0 โ ๐ ๐ฅ = 2 lim ๐ฅโ ๐ ๐ฅ = 2 lim ๐ฅโ0 ๐ ๐ฅ = ๐ 0 = 2 2 lim ๐ฅโ 2 โ ๐ ๐ฅ = 6 lim ๐ฅโ ๐ ๐ฅ = โ1 lim ๐ฅโ2 ๐ ๐ฅ = ๐ท๐๐ธ ๐ 2 = 6 lim ๐ฅโ 3 โ ๐ ๐ฅ = 2 lim ๐ฅโ ๐ ๐ฅ = โ4 lim ๐ฅโ3 ๐ ๐ฅ = ๐ 3 = ๐ท๐๐ธ 2
11
1.1 โ Limits: A Numerical and Graphical Approach
Given the graph of a function, find the requested limits. lim ๐ฅโ โ3 โ ๐ ๐ฅ = โ1 lim ๐ฅโ โ3 + ๐ ๐ฅ = โ2 lim ๐ฅโโ3 ๐ ๐ฅ = ๐ท๐๐ธ ๐ โ3 = โ1 lim ๐ฅโ 0 โ ๐ ๐ฅ = 2 lim ๐ฅโ ๐ ๐ฅ = 2 lim ๐ฅโ0 ๐ ๐ฅ = ๐ 0 = 2 2 lim ๐ฅโ 1 โ ๐ ๐ฅ = 1 lim ๐ฅโ ๐ ๐ฅ = โ3 lim ๐ฅโ1 ๐ ๐ฅ = ๐ท๐๐ธ ๐ 1 = โ3 lim ๐ฅโ 2 โ ๐ ๐ฅ = โ1 lim ๐ฅโ ๐ ๐ฅ = โ3 lim ๐ฅโ2 ๐ ๐ฅ = ๐ 2 = ๐ท๐๐ธ โ3
12
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Graphically lim ๐ฅโโ ๐ ๐ฅ = lim ๐ฅโโ ๐ ๐ฅ = โ โ lim ๐ฅโโโ ๐ ๐ฅ = lim ๐ฅโโโ ๐ ๐ฅ = โ โโ
13
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Graphically lim ๐ฅโ 1 โ ๐ ๐ฅ = lim ๐ฅโโ ๐ ๐ฅ = โโ lim ๐ฅโโ ๐ ๐ฅ = lim ๐ฅโ 0 โ ๐ ๐ฅ = 1 โโ lim ๐ฅโโโ ๐ ๐ฅ = lim ๐ฅโ ๐ ๐ฅ = โ โ1 lim ๐ฅโโโ ๐ ๐ฅ = lim ๐ฅโ ๐ ๐ฅ = โ
14
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Graphically ๐ ๐ฅ = 1 ๐ฅโ1 lim ๐ฅโโ 1 ๐ฅโ1 = lim ๐ฅโโโ 1 ๐ฅโ1 = lim ๐ฅโ ๐ฅโ1 = โ lim ๐ฅโ 1 โ 1 ๐ฅโ1 = โโ lim ๐ฅโ1 1 ๐ฅโ1 = ๐ท๐๐ธ
15
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐ ๐ฅ = 1 ๐ฅโ1 ๐ 10 = 1 10โ1 =0.111 ๐ 100 = 1 100โ1 =0.0101 ๐ 1000 = โ1 = lim ๐ฅโโ 1 ๐ฅโ1 =0
16
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐ ๐ฅ = 1 ๐ฅโ1 ๐ โ10 = 1 โ10โ1 =โ0.0909 ๐ โ100 = 1 โ100โ1 =โ0.0099 ๐ โ1000 = 1 โ1000โ1 =โ lim ๐ฅโโโ 1 ๐ฅโ1 =0
17
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐ ๐ฅ = 1 ๐ฅโ1 ๐ 1.01 = โ1 =100 ๐ = โ1 =1000 ๐ = 1 โ1000โ1 =10000 lim ๐ฅโ ๐ฅโ1 =โ
18
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐ ๐ฅ = 1 ๐ฅโ1 ๐ 0.9 = 1 0.9โ1 =โ10 ๐ .99 = โ1 =โ100 ๐ = โ1 =โ1000 lim ๐ฅโ 1 โ 1 ๐ฅโ1 =โโ
19
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Graphically ๐ ๐ฅ = โ1 ๐ฅ+4 +3 lim ๐ฅโโ โ1 ๐ฅ+4 +3= 3 lim ๐ฅโโโ โ1 ๐ฅ+4 +3= 3 lim ๐ฅโ โ4 โ โ1 ๐ฅ+4 +3= โ lim ๐ฅโโ โ1 ๐ฅ+4 +3= โโ lim ๐ฅโ4 โ1 ๐ฅ+4 +3= ๐ท๐๐ธ
20
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐ 10 = โ = ๐ ๐ฅ = โ1 ๐ฅ+4 +3 ๐ 100 = โ = ๐ 1000 = โ = lim ๐ฅโโ โ1 ๐ฅ+4 +3=3
21
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐ โ10 = โ1 โ = ๐ ๐ฅ = โ1 ๐ฅ+4 +3 ๐ โ100 = โ1 โ = ๐ โ1000 = โ1 โ = lim ๐ฅโโโ โ1 ๐ฅ+4 +3=3
22
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐ โ4.01 = โ1 โ =103 ๐ ๐ฅ = โ1 ๐ฅ+4 +3 ๐ โ4.001 = โ1 โ =1003 ๐ โ = โ1 โ =10003 lim ๐ฅโโ 4 โ โ1 ๐ฅ+4 +3=โ
23
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Infinity Numerically ๐ โ3.9 = โ1 โ =โ7 ๐ ๐ฅ = โ1 ๐ฅ+4 +3 ๐ โ3.99 = โ1 โ =โ97 ๐ โ3.999 = โ1 โ =โ997 lim ๐ฅโโ โ1 ๐ฅ+4 +3=โโ
24
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Piecewise Functions
25
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Piecewise Functions lim ๐ฅโ3 ๐ ๐ฅ = lim ๐ฅโโ2 ๐ ๐ฅ = lim ๐ฅโ3 2๐ฅโ1= lim ๐ฅโโ2 โ ๐ฅ 2 +4= lim ๐ฅโ โ1= lim ๐ฅโโ2 โ โ = lim ๐ฅโ3 ๐ ๐ฅ =5 lim ๐ฅโโ2 ๐ ๐ฅ =0 ๐ ๐ฅ = โ ๐ฅ 2 +4 ๐ฅ<1 2๐ฅโ1 ๐ฅโฅ1 lim ๐ฅโ1 ๐ ๐ฅ = lim ๐ฅโ 1 โ ๐ ๐ฅ = lim ๐ฅโ ๐ ๐ฅ = 1 โ ๐ฅ 2 +4 2๐ฅโ1 lim ๐ฅโ 1 โ โ ๐ฅ 2 +4= lim ๐ฅโ ๐ฅโ1= lim ๐ฅโ 1 โ ๐ ๐ฅ =3 lim ๐ฅโ ๐ ๐ฅ =1 lim ๐ฅโ1 ๐ ๐ฅ = ๐ท๐๐ธ
26
1.1 โ Limits: A Numerical and Graphical Approach
Limits Involving Piecewise Functions lim ๐ฅโโ2 ๐ ๐ฅ = lim ๐ฅโ โ2 โ ๐ ๐ฅ = lim ๐ฅโ โ ๐ ๐ฅ = lim ๐ฅโโ 2 โ ๐ฅ+3= lim ๐ฅโ โ ๐ฅ 2 = lim ๐ฅโโ 2 โ โ2+3= lim ๐ฅโ โ โ2 2 = lim ๐ฅโ โ ๐ ๐ฅ =4 lim ๐ฅโโ 2 โ ๐ ๐ฅ =1 lim ๐ฅโโ2 ๐ ๐ฅ = ๐ท๐๐ธ ๐ ๐ฅ = ๐ฅ+3 ๐ฅ<โ2 ๐ฅ 2 โ2โค๐ฅโค1 โ๐ฅ+2 ๐ฅ>1 lim ๐ฅโ1 ๐ ๐ฅ = lim ๐ฅโ 1 โ ๐ ๐ฅ = lim ๐ฅโ ๐ ๐ฅ = lim ๐ฅโ 1 โ ๐ฅ 2 = lim ๐ฅโโ โ๐ฅ+2= โ2 1 ๐ฅ+3 ๐ฅ 2 โ๐ฅ+2 lim ๐ฅโ 1 โ = lim ๐ฅโ โ 1 +2= lim ๐ฅโ 1 โ ๐ ๐ฅ =1 lim ๐ฅโ ๐ ๐ฅ =1 lim ๐ฅโ1 ๐ ๐ฅ = 1
28
1.1 โ Limits: A Numerical and Graphical Approach
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.