Download presentation
Presentation is loading. Please wait.
1
Recombination-Generation Process
Chapter 5 Recombination-Generation Process
2
INTRODUCTION Survey of R-G Processes Recombination Processes
Recombination: A process whereby electrons and holes(carriers) are annihilated or destroyed. Generation: A process whereby electrons and holes are created. Recombination Processes (1) Band-to-Band Recombination (direct thermal recombination) radiative recombination (photon emission)
3
(2) R-G center recombination (band-to-impurity recombination)
Shockely-Read-Hall theory(indirect thermal recombination) radiative nonradiative R-G center recombination is important in indirect bandgap material with high concentration of deep or tightly bound nonhydrogenic centers. Isoelectronic N-doping in GaP (indirect bandgap) (3) Recombination via shallow levels very inefficient R-G center at room temperature. Recombination via shallow levels is important radiative process at low temperature.
4
(4) Recombination involving excitons
free exciton bound exciton ๐ธ ๐๐ฅ โ5 ๐๐๐ When electrons and holes are sufficiently close, a Coulomb attraction between them can be expected because of their opposing effective charges. For sufficiently low thermal energy, the coulomb attraction results in a situation where the electrons and holes circle each other around their joint center of mass. This bound electron-hole pair is referred to as an exciton since it represent the first excited state of the one-electron energy band. The coulomb attraction lowers the energy of an electron, which would, otherwise, be in the conduction band, and produces a series of allowed energy states just below the conduction band in the forbidden bandgap. The binding energy of exciton, ๐ธ ๐๐ฅ =13.6 ๐๐ 1 ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ = ๐ ๐ โ ๐ ๐ โ ๐ ๐ โ + ๐ ๐ โ where : reduced mass
5
(5) Auger recombination
The energy and momentum released by recombining electron hole pair is immediately observed by another electron or hole which then dissipates this energy and momentum by emitting phonons. Collision of three particles: nonradiative recombination reverse of impact ionization Dominant in heavily doped direct band gap materials and narrow band gap materials
6
Generation Processes Band-to-band generation
R-G center generation and photoemission from band gap center Impact ionization (opposite process of Auger recombination)
7
Momentum Considerations
For direct band gap material Energy conservation ๐ธ ๐ ๐ธ ๐โ๐๐ก๐๐ =โ๐ = ๐ธ ๐ โ ๐ธ ๐ Thermal energy or light energy โ๐ โ ๐ธ ๐ Momentum conservation โ๐ > ๐ธ ๐ ๐ธ ๐ โ ๐ ๐ โ ๐ ๐ + ๐ ๐โ๐๐ก๐๐ =0 For example, GaAs with lattice constant, a =5.65 ร
along ๐ค โ X. = 2๐ ๐ Width in k-axis along (๐ค โ X) โ๐ โ ๐ธ ๐ = eV, ฮป= 0.87 ๐๐ >> a, ๐ ๐โ๐๐ก๐๐ = ๐ 2๐ ฮป ๐ ๐โ๐๐ก๐๐ โช 2๐ ๐ very small in E โ k diagram ๐ ๐โ๐๐ก๐๐ โ0
8
For indirect band gap material
phonon absorption Thermal energy associated with lattice vibrations (phonons) โ10 ~ 50 meV. ๐ธ ๐ phonon emission โ๐ ๐ธ ๐ Effective phonon mass and associated momentum are comparatively large. โด Phonon associated transition is essentially horizontal. Energy conservation phonon absorption โ๐ = ๐ธ ๐ โ ๐ธ ๐ โ ๐ธ ๐โ๐๐๐๐ phonon emission Momentum conservation โ ๐ ๐ โ ๐ ๐ + ๐ ๐โ๐๐ก๐๐ + ๐ ๐โ๐๐๐๐ =0 โ0
9
RECOMBINATION-GENERATION STATISTICS
Band-to-Band Recombination intraband scattering (~10-13 sec) ๐ธ ๐ recombination ( 10-9 ~ 10-6 sec) photon emission โ๐ โ ๐ธ ๐ light energy absorption โ๐ > ๐ธ ๐ ๐ธ ๐ Thermal generation rate, Gt = Gt(T): function of temperature only because large number of filled electrons in the valence band and empty states in the conduction band. Recombination generation rate, R โ np โ R(n, p,T) = r(T)np Rate constant or recombination coefficient [cm3/sec] In equilibrium, Gt(T)= R(n0, p0,T) = r(T)n0p0 = r(T)ni2 for nondegenerated case
10
With a steady-state nonequilibrium situation
G + Gt(T)= R(n, p,T) = r(T)np When the external stimulus is turned off, G = 0, n โ n0 p โ p0 decay of carriers โ ๐๐ ๐ , ๐ก ๐๐ก =โ ๐๐ ๐ , ๐ก ๐๐ก =๐
๐, ๐, ๐ โ ๐บ ๐ก ๐ =๐ ๐ ๐๐โ๐ ๐ ๐ 0 ๐ 0 =๐ ๐ (๐๐โ ๐ ๐ 2 ) โ ๐๐ ๐ , ๐ก ๐๐ก =โ ๐ ๐ 0 ๐ +โ๐ ๐ , ๐ก ๐๐ก =โ ๐โ๐ ๐ , ๐ก ๐๐ก =โ ๐โ๐ ๐ , ๐ก ๐๐ก = ๐ ๐ 0 +โ๐ ๐ 0 +โ๐ โ๐ ๐ 0 ๐ 0 =๐ ๐ 0 ๐ 0 + ๐ 0 โ๐+ ๐ 0 โ๐+โ๐โ๐ โ๐ ๐ 0 ๐ 0 =๐ ๐ 0 โ๐+ ๐ 0 โ๐+โ๐โ๐ Assuming charge neutrality, โ ๐=โ๐ โ ๐โ๐ ๐ , ๐ก ๐๐ก =๐ ๐ 0 + ๐ 0 +โ๐ โ๐ then, Separating variables and integrating with time โ๐ 0 ๐ก ๐๐ก = โ๐(0) โ๐(๐ก) ๐โ๐ ๐ 0 + ๐ 0 +โ๐ โ๐
11
1 ๐ 0 + ๐ 0 ๐๐ โ๐ ๐ 0 + ๐ 0 +ฮด๐ โ๐(0 โ๐(๐ก) =โ๐๐ก
๐๐ โ๐(๐ก) ๐ 0 + ๐ 0 +โ๐(0) ๐ 0 + ๐ 0 +ฮด๐(๐ก) โ๐(0) =โ๐ (๐ 0 + ๐ 0 )๐ก โ ๐(๐ก)= ๐ 0 + ๐ 0 โ๐(0) ๐ 0 + ๐ 0 +โ๐(0) ๐ ๐ (๐ 0 + ๐ 0 )๐ก โโ๐(0) (i) Low level excitation, โ ๐ 0 =โ๐ 0 โช ๐ 0 + ๐ 0 โ ๐(๐ก)โโ๐(0) ๐ โ๐ (๐ 0 + ๐ 0 )๐ก =โ๐ 0 ๐ โ ๐ก ๐ ๐ ๐ ๐ โก 1 ๐ (๐ 0 + ๐ 0 ) where : excess carrier lifetime ๐โ๐ ๐ก ๐๐ก = โ๐ 0 ๐ ๐ ๐ โ ๐ก ๐ ๐ =โ โ๐ ๐ก ๐ ๐ (ii) High level excitation, โ ๐ 0 =โ๐ 0 โซ ๐ 0 + ๐ 0 โ๐ 0 ๐ก ๐๐ก โ โ๐(0) โ๐(๐ก) ๐โ๐ โ๐ 2 โ 1 โ๐(๐ก) โ 1 โ๐(0) =โ๐๐ก โ ๐ ๐ก = โ๐(0) 1+๐๐กโ๐(0) : quadratic recombination (hyperbolic decay of excess carrier with time)
12
Lifetime for high level excitation?
From the expression in low level excitation, ๐โ๐ ๐ก ๐๐ก =โ โ๐ ๐ก ๐ ๐ ๐โ๐ ๐ก ๐๐ก = ๐ ๐๐ก โ๐(0) 1+๐๐กโ๐(0) = ๐ โ๐(0) ๐๐กโ๐(0) 2 =๐ โ๐(๐ก) 2 =โ โ๐ ๐ก ๐ ๐ ๐ ๐ ๐ก = 1 ๐โ๐ ๐ก : bimolecular recombination Lifetime continually changes as system relaxes to equilibrium
13
RECOMBINATION-GENERATION STATISTICS
Band-to-Impurity Recombination Shockely-Read-Hall Theory important in indirect band gap semiconductor with high concentration of deep or tightly bound nonhydrogenic centers. Definition of Terms ๐๐ ๐๐ก | ๐
โ๐บ : Time rate in electron concentration due to both R-G center recombination and R-G center generation ๐๐ ๐๐ก | ๐
โ๐บ : Time rate in hole concentration due to both R-G center recombination and R-G center generation ๐ ๐ : Number of R-G centers/cm3 that are filled with electrons = ๐ ๐ โ for acceptor-like = ๐ ๐ โ ๐ ๐ + for donor-like ๐ ๐ : Number of empty R-G centers/cm3 ๐ ๐ : Total number of R-G centers/cm3 = ๐ ๐ + ๐ ๐
14
If the processes (a) and (b) have a higher probability of occurring than (c) and (d), the center acts as and electron trap. Vice versa for hole trap. The center enhances recombination(acts as a recombination center) when processes (a) and (c) have a higher probability than (b) and (d). Processes (b) and (d) should be easier for shallow center. Trapping center is most efficient when the center is near the center of the band gap. Temperature tends to slow down the recombination process through trap. ๐๐ ๐๐ก | ๐
โ๐บ = ๐๐ ๐๐ก | (๐) + ๐๐ ๐๐ก | (๐) ๐๐ ๐๐ก | ๐
โ๐บ = ๐๐ ๐๐ก | (๐) + ๐๐ ๐๐ก | (๐)
15
โ ๐๐ ๐๐ก | ๐ โ๐โ ๐ ๐ (1โ๐( ๐ธ ๐ )โ๐โ ๐ ๐ = ๐ ๐ ๐โ ๐ ๐ = ๐ฃ ๐กโ ๐ ๐ ๐โ ๐ ๐
โ ๐๐ ๐๐ก | (๐) Electron capture rate, proportionality constant (electron capture coefficient [cm3/sec]) thermal velocity [cm/sec] โ ๐๐ ๐๐ก | ๐ โ๐โ ๐ ๐ (1โ๐( ๐ธ ๐ )โ๐โ ๐ ๐ = ๐ ๐ ๐โ ๐ ๐ = ๐ฃ ๐กโ ๐ ๐ ๐โ ๐ ๐ number of unoccupied trap states capture cross-section [cm2] free electron concentration ๐๐ ๐๐ก | (๐) Electron emission rate, proportionality constant (electron emission coefficient [1/sec]) ๐๐ ๐๐ก | ๐ = ๐ ๐ โ1โ ๐ ๐ (๐( ๐ธ ๐ )= ๐ ๐ ๐ ๐ electron emission coefficient [1/sec] number of occupied trap states because conduction band has numerus unoccupied states Hole capture rate, โ ๐๐ ๐๐ก | (๐) number of holes in the valence band( number of unoccupied states in the valence band) โ ๐๐ ๐๐ก | ๐ = ๐ ๐ ๐ ๐ (๐( ๐ธ ๐ )โ๐= ๐ ๐ ๐ ๐ ๐= ๐ฃ ๐กโ ๐ ๐ ๐ ๐ ๐ number of occupied trap states hole capture coefficient [cm3/sec] Hole emission rate, ๐๐ ๐๐ก | (๐) because valence band has numerus filled states number of unoccupied trap states ๐๐ ๐๐ก | ๐ = ๐ ๐ โ1โ ๐ ๐ (1โ๐( ๐ธ ๐ )โ๐= ๐ ๐ ๐ ๐ hole emission coefficient [1/sec]
16
The Equilibrium Simplification
Net electron recombination rate, ๐ ๐ +: if recombination is dominant. -: if generation is dominant. ๐ ๐ โกโ ๐๐ ๐๐ก | ๐
โ๐บ = ๐ ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐ Net hole recombination rate, ๐ ๐ +: if recombination is dominant. -: if generation is dominant. ๐ ๐ โกโ ๐๐ ๐๐ก | ๐
โ๐บ = ๐ ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐ ๐ ๐ =0 under thermal equilibrium ๐ ๐ =0 equilibrium Then, ๐ ๐0 = ๐ ๐0 ๐ 0 ๐ ๐0 ๐ ๐0 = ๐ ๐0 ๐ 1 ๐ ๐0 = ๐ ๐0 ๐ 0 ๐ ๐0 ๐ ๐0 = ๐ ๐0 ๐ 1 and ๐ 1 = ๐ 0 ๐ ๐0 ๐ ๐0 = ๐ 0 ๐ ๐ โ๐ ๐0 ๐ ๐0 = ๐ 0 ๐ ๐ ๐ ๐0 โ1 where from chapter 4 ๐ ๐0 ๐ ๐ =1 โ ๐ ๐ + ๐ ๐ = 1 1+ ๐ ๐ธ ๐ โฒ โ ๐ธ ๐น /๐๐ ๐ ๐ + ๐ ๐ = 1 1+ ๐ ๐ ๐ ๐ธ ๐น โ ๐ธ ๐ /๐๐ = 1 1+ ๐ ๐ธ๐นโ ๐ธ ๐ โฒ /๐๐ ๐ธ ๐ โฒ = ๐ธ ๐ ยฑ๐๐๐๐ ๐ ๐
17
The concentration of holes that would be in valence band if EF = ETโ.
๐ ๐0 ๐ ๐ = 1 1+ ๐ ๐ธ ๐ โฒ โ ๐ธ ๐น /๐๐ , ๐ 0 = ๐ ๐ ๐ ๐ธ ๐น โ ๐ธ ๐ /๐๐ โด๐ 1 = ๐ 0 ๐ ๐ ๐ ๐0 โ1 = ๐ ๐ ๐ ๐ธ ๐น โ ๐ธ ๐ /๐๐ (1+ ๐ ๐ธ ๐ โฒ โ ๐ธ ๐น /๐๐ -1) = ๐ ๐ ๐ ๐ธ ๐ โฒ โ ๐ธ ๐ /๐๐ if ๐ ๐ =1, ๐ธ ๐ โฒ = ๐ธ ๐ The concentration of electrons that would be in the conduction band if EF = ETโ. Similarly, ๐ 1 = ๐ ๐ ๐ ๐ธ ๐ โ ๐ธ ๐ โฒ /๐๐ The concentration of holes that would be in valence band if EF = ETโ. ๐ ๐0 = ๐ ๐0 ๐ 1 ๐ ๐0 = ๐ p0 ๐ 1 Assuming ๐ ๐ โ
๐ ๐0 โ ๐ ๐0 ๐ 1 โ
๐ ๐ ๐ 1 ๐ ๐ โ
๐ ๐0 โ ๐ ๐0 ๐ 1 โ
๐ ๐ ๐ 1 nonequilibrium ๐ ๐ =โ ๐๐ ๐๐ก | ๐
โ๐บ = ๐ ๐ ( ๐ ๐ ๐โ ๐ ๐ ๐ 1 ) ๐ ๐ โกโ ๐๐ ๐๐ก | ๐
โ๐บ = ๐ ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐ ๐ ๐ =โ ๐๐ ๐๐ก | ๐
โ๐บ = ๐ ๐ ( ๐ ๐ ๐โ ๐ ๐ ๐ 1 ) ๐ ๐ โกโ ๐๐ ๐๐ก | ๐
โ๐บ = ๐ ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐
18
Steady-State Relationship
The rate of change on the filled traps under steady-state, ๐ ๐ ๐ ๐ ๐ธ ๐ ๐๐ก = ๐ ๐ ๐ ๐๐ก =โ ๐๐ ๐๐ก | ๐
โ๐บ + ๐๐ ๐๐ก | ๐
โ๐บ = ๐ ๐ โ๐ ๐ =0 ๐ ๐ =โ ๐๐ ๐๐ก | ๐
โ๐บ = ๐ ๐ ๐ ๐ ๐โ ๐ ๐ ๐ 1 , ๐ ๐ =โ ๐๐ ๐๐ก | ๐
โ๐บ = ๐ ๐ ( ๐ ๐ ๐โ ๐ ๐ ๐ 1 ) and by using ๐ ๐ = ๐ ๐ โ ๐ ๐ ๐ ๐ = ๐ ๐ ๐ ๐ ๐+ ๐ ๐ ๐ ๐ ๐ 1 ๐ ๐ ๐+ ๐ 1 + ๐ ๐ ๐+ ๐ 1 Then, eliminating ๐ ๐ and ๐ ๐ and using ๐ 1 ๐ 1 = ๐ ๐ 2 ๐
= ๐ ๐ =๐ ๐ = ๐๐โ ๐ ๐ ๐ ๐ ๐ ๐ ๐+ ๐ ๐ ๐ ๐ ๐ ๐+ ๐ 1 : net steady-state recombination rate compare with band to band recombination rate at low level excitation = ๐๐โ ๐ ๐ 2 ๐ ๐ ๐+ ๐ 1 + ๐ ๐ ๐+ ๐ 1 โ ๐๐ ๐ , ๐ก ๐๐ก =๐ ๐ (๐๐โ ๐ ๐ 2 ) โโ ๐โ๐ ๐๐ก = โ๐ ๐ โโ ๐โ๐ ๐ก ๐๐ก = โ๐ ๐ก ๐ ๐ life time dimension of time where ๐ ๐ โก 1 ๐ ๐ ๐ ๐ = 1 ๐ ๐ ๐ฃ ๐กโ ๐ ๐ , ๐ ๐ โก 1 ๐ ๐ ๐ ๐ = 1 ๐ ๐ ๐ฃ ๐กโ ๐ ๐
19
Specialized Steady-State Relationships
Assuming โ ๐=โ๐, ๐=๐ 0 +โ๐, ๐=๐ 0 +โ๐ ๐
= ๐๐โ ๐ ๐ 2 ๐ ๐ ๐+ ๐ 1 + ๐ ๐ ๐+ ๐ 1 = ๐ 0 +โ๐ ๐ 0 +โ๐ โ ๐ ๐ 2 ๐ ๐ ๐ 0 +โ๐+ ๐ 1 + ๐ ๐ ๐ 0 +โ๐+ ๐ 1 = ๐ 0 + ๐ 0 +โ๐ โ๐ ๐ ๐ ๐ 0 + ๐ 1 + ๐ ๐ ๐ 0 + ๐ ๐ ๐ + ๐ ๐ โ๐ = โ๐ ๐ โด 1 ๐ = ๐ 0 + ๐ 0 +โ๐ ๐ ๐ ๐ 0 + ๐ 1 + ๐ ๐ ๐ 0 + ๐ ๐ ๐ + ๐ ๐ โ๐ (i) High Level Injection (โ ๐=โ๐โโ ) ๐
โ โ๐ ๐ ๐ + ๐ ๐ = โ๐ ๐ โด๐= ๐ ๐ + ๐ ๐ (ii) Low Level Injection (โ ๐= โ๐โช๐ 0 , ๐ 0 , ๐ 1 , ๐ 1 ) ๐
โ ๐ 0 + ๐ 0 โ๐ ๐ ๐ ๐ 0 + ๐ 1 + ๐ ๐ ๐ 0 + ๐ 1 = โ๐ ๐ โด๐= ๐ ๐ ๐ 0 + ๐ 1 + ๐ ๐ ๐ 0 + ๐ 1 ๐ 0 + ๐ 0
20
For n-type material, ๐ 0 โซ๐ 0
๐
โ ๐ 0 โ๐ ๐ ๐ ๐ 0 + ๐ 1 + ๐ ๐ ๐ 1 = โ๐ ๐ โด๐= ๐ ๐ ๐ 0 + ๐ 1 + ๐ ๐ ๐ 1 ๐ 0 Practically the trap energy is usually near the center. ๐ 1 โช๐ 0 , ๐ 1 โช๐ 0 โด๐โ
๐ ๐ โ,๐
= โ๐ ๐ ๐ For p-type material, ๐ 0 โซ๐ 0 ๐โ
๐ ๐ โ,๐
= โ๐ ๐ ๐ ๐ ๐ โ ๐ ๐ because ๐ ๐ โ ๐ ๐ For near intrinsic ( ๐ธ ๐น โ ๐ธ ๐ ), ๐ 1 โ๐ 0 , ๐ 1 โ๐ 0 ๐โ ๐ ๐ ๐ 0 + ๐ 1 + ๐ ๐ ๐ 0 + ๐ 1 ๐ 0 + ๐ 0 = ๐ ๐ + ๐ ๐ : largest life time Physical meanings: For strong n-type case, traps are almost filled with electrons and electrons in conduction band are so numerus. One will recombine immediately with hole that is captured by a trap. โด Capture of holes limits the recombination process (hole life time) Vice versa for p-type case โelectron life time
21
(iii) RโG Depletion Region
R-G depletion region is formally defined to be a semiconductor volume where ๐โช๐ 1 and ๐โช๐ 1 โ๐๐โช ๐ 1 ๐ 1 = ๐ ๐ 2 . The existence of an electrostatic depletion region requires ๐ and ๐ < ๐ ๐ท โ ๐ ๐ด . A carrier deficit and associated R-G region are created inside the electric depletion region in a pn junction only under reverse bias condition. ๐๐โช ๐ ๐ 2 ๐๐= ๐ ๐ 2 at equilibrium ๐๐โซ ๐ ๐ 2 at forward bias ๐ธ ๐ = ๐ธ ๐ โฒ ๐ธ ๐น๐ Welectrostatic WR-G < Welectrostatic (WR-G โ Welectrostatic at large reverse bias) WR-G ๐ธ ๐น๐ with ๐โช๐ 1 and ๐โช๐ 1 , ๐
= ๐๐โ ๐ ๐ 2 ๐ ๐ ๐+ ๐ 1 + ๐ ๐ ๐+ ๐ 1 โ โ ๐ ๐ 2 ๐ ๐ ๐ 1 + ๐ ๐ ๐ 1 โ๐บ=โ๐
=โ ๐ ๐ ๐ ๐ : net generation rate where ๐ ๐ โก ๐ ๐ ๐ 1 ๐ ๐ + ๐ ๐ ๐ 1 ๐ ๐ :generation life time if ๐ธ ๐ โฒ = ๐ธ ๐ . = ๐ ๐ + ๐ ๐
22
Physical View of Carrier Capture
randomly distributed R-G centers concept of capture-cross section During capture process, the carrier velocity ๐ฃโ ๐ฃ ๐กโ where ๐ฃ ๐กโ = 3๐๐/ ๐ โ 1 2 ๐ โ ๐ฃ ๐กโ 2 = 3 2 ๐๐ In a time ๐ก, an electron will travel a distance ๐ฃ ๐กโ ๐ก and will pass through a volume of material equal to ๐ด ๐ฃ ๐กโ ๐ก. In this volume, there will be ๐ ๐ empty R-G centers/cm3 or a total number of ๐ ๐ ๐ด ๐ฃ ๐กโ ๐ก empty R-G centers. cross-sectional area of the material normal to the electron path. The probability of the electron being captured in the volume can be determined by conceptually moving the centers to a single-plane in the middle of the volume.
23
If the area of the plane blocked by a single R-G center is ๐ ๐ =๐ ๐ 2
, where ๐ is the radius of the R-G center, the total area blocked by empty R-G centers = ๐ ๐ ๐ด๐ ๐ ๐ฃ ๐กโ ๐ก The fraction of the area giving rise to capture = ๐ ๐ ๐ด๐ ๐ ๐ฃ ๐กโ ๐ก/๐ด = ๐ ๐ ๐ ๐ ๐ฃ ๐กโ ๐ก The probability of electron captured in the volume Capture rate (probability of capture/second) for a single electron = ๐ ๐ ๐ ๐ ๐ฃ ๐กโ ๐ก/๐ก= ๐ ๐ ๐ ๐ ๐ฃ ๐กโ The number of electrons/cm3 captured per second, given n electrons/cm3. = ๐๐ ๐ ๐ ๐ ๐ฃ ๐กโ ๐๐ ๐๐ก | (๐) =โ๐๐ ๐ ๐ ๐ ๐ฃ ๐กโ โด ๐ถ ๐ = ๐ ๐ ๐ฃ ๐กโ Similarly, ๐ถ ๐ = ๐ ๐ ๐ฃ ๐กโ
24
SURFACE RECOMBINATION-GENERATION
Interfacial traps or surface states are functionally equivalent to the R-G centers localized at the surface of a material. continuously distributed in energy throughout the semiconductor band gap
25
General Rate Relationships (Single Level)
To stress the physical significance of surface recombination, we simplify the mathematics by considering the most efficient single level, which there are NTS surface states/cm2 at energy EIT (i.e., traps are located near midgap) Define surface recombination velocity, S, as an important parameter for surface recombination. Adding the subscript s to the corresponding bulk definitions, ๐ ๐๐ Net electron recombination rate at surface centers (that is, the net change in the number of conduction band electrons/cm2-sec due to electron capture and emission at the single level surface centers). ๐ ๐๐ Net hole recombination rate at the surface centers. ๐ ๐๐ Filled surface centers/cm2 at energy EIT. ๐ ๐๐ Empty surface centers/cm2 at energy EIT. ๐ ๐๐ Total number of surface states/cm2; ๐ ๐๐ = ๐ ๐๐ + ๐ ๐๐ ๐ ๐ Surface electron concentration( number per cm3); ๐ ๐ = ๐| ๐ ๐ข๐๐๐๐๐ ๐ ๐ Surface hole concentration ๐ ๐๐ , ๐ ๐๐ Surface electron and hole emission coefficient (1/sec) ๐ ๐๐ , ๐ ๐๐ Surface electron and hole capture coefficient (cm3/sec)
26
๐ ๐๐ = ๐ ๐๐ ๐ ๐๐ ๐ ๐ โ ๐ ๐๐ ๐ ๐๐ ๐ ๐๐ = ๐ ๐๐ ๐ ๐๐ ๐ ๐ โ ๐ ๐๐ ๐ ๐๐
Given the one-to-one correspondence between physical processes and parameteric quantities, ๐ ๐ = ๐ ๐ ๐ ๐ ๐โ ๐ ๐ ๐ ๐ ๐ ๐๐ = ๐ ๐๐ ๐ ๐๐ ๐ ๐ โ ๐ ๐๐ ๐ ๐๐ ๐ ๐๐ = ๐ ๐๐ ๐ ๐๐ ๐ ๐ โ ๐ ๐๐ ๐ ๐๐ ๐ ๐ = ๐ ๐ ๐ ๐ ๐โ ๐ ๐ ๐ ๐ ๐ ๐ = ๐ ๐ (๐ ๐ ๐โ ๐ ๐ ๐ 1 ) ๐ ๐๐ = ๐ ๐๐ (๐ ๐๐ ๐ ๐ โ ๐ ๐๐ ๐ 1๐ ) ๐ ๐๐ = ๐ ๐๐ ( ๐ ๐๐ ๐ ๐ โ ๐ ๐๐ ๐ 1๐ ) ๐ ๐ = ๐ ๐ ( ๐ ๐ ๐โ ๐ ๐ ๐ 1 ) where ๐ ๐๐ = ๐ ๐๐ ๐ 1๐ ๐ ๐๐ = ๐ ๐๐ ๐ 1๐ Taking the surface-center degeneracy factor to be unity, ๐ 1๐ = ๐ ๐ ๐ ๐ธ ๐ผ๐ โ ๐ธ ๐ /๐๐ ๐ 1 = ๐ ๐ ๐ ๐ธ ๐ โฒ โ ๐ธ ๐ /๐๐ if ๐ ๐ =1, ๐ 1๐ = ๐ ๐ ๐ ๐ธ ๐ โ ๐ธ ๐ผ๐ /๐๐ ๐ธ ๐ โฒ = ๐ธ ๐
27
Steady-State Relationships (Single Level)
Under steady-state condition, ๐ ๐๐ = ๐ ๐๐ โก๐
๐ If the filled-state population of interfacial traps at EIT is assumed to change exclusively via thermal band-to-trap interactions, ๐ ๐๐ = ๐ ๐๐ ๐ ๐๐ ๐ ๐ + ๐ ๐๐ ๐ ๐๐ ๐ ๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ + ๐ ๐๐ ๐ ๐ + ๐ 1๐ ๐
๐ = ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ ๐ ๐๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ : the recombination rateโ[ /cm2โsec] ๐
= ๐๐โ ๐ ๐ ๐ ๐ ๐ ๐ ๐+ ๐ ๐ ๐ ๐ ๐ ๐+ ๐ 1 1 ๐ ๐๐ ๐ ๐๐ , 1 ๐ ๐๐ ๐ ๐๐ : are not time constant. ๐ ๐๐ ๐ ๐๐ ,๐ ๐๐ ๐ ๐๐ : [cm3/sec]โ[#/cm3] = [cm/sec] : unit of velocity. ๐ ๐๐ ๐ ๐๐ โก ๐บ ๐ : surface recombination velocity parameter for electron and hole. ๐ ๐๐ ๐ ๐๐ โก ๐บ ๐ corresponds to the life time parameter ๐ ๐ , ๐ ๐
28
Surface Recombination Velocity
p(x) ๐ฝ๐(0) โp(x) p0 ๐(0) :surface recombination velocity at x = 0 ๐(0) x x = 0 If we assume the electric field at the surface is negligible, the hole current at the surface is mainly due to diffusion. ๐ฝ ๐ 0 =โ๐ ๐ท ๐ ๐๐ 0 ๐๐ฅ =โ๐ ๐ท ๐ ๐โ๐ 0 ๐๐ฅ =๐ ๐ท ๐ ๐โ ๐ ๐ ๐๐ฅ Hole flux = number of hole arriving per unit area per second, = ๐ฝ ๐ 0 ๐ From continuity equation at x = 0, ๐๐(0) ๐๐ก = ๐บ ๐ โ ๐
๐ โ 1 ๐ ๐ปโ ๐ฝ ๐ =0โ ๐ท ๐ ๐โ ๐ ๐ ๐๐ฅ = ๐
๐
29
๐ท ๐ ๐โ ๐ ๐ ๐๐ฅ = ๐
๐ = ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ ๐ ๐๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ = ๐ ๐ 0 +๐ ๐ 0 +โ ๐ ๐ ๐ ๐๐ 1 ๐ ๐๐ ๐ ๐ + ๐ 1๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ โ ๐ ๐ [cm2/sec] [ /cm2โsec] ๐
= โ๐ ๐ unit of [cm/sec] (compare with In bulk) referred to as the surface recombination velocity, S. [ /cm3โsec] For low level excitation for n-type material, ๐
๐ = ๐ ๐ 0 +๐ ๐ 0 +โ ๐ ๐ ๐ ๐๐ 1 ๐ ๐๐ ๐ ๐ + ๐ 1๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ โ ๐ ๐ โ ๐ ๐ 0 ๐ ๐๐ 1 ๐ ๐๐ ๐ ๐ + ๐ 1๐ โ ๐ ๐ โ ๐ ๐๐ ๐ ๐๐ โ ๐ ๐ = ๐บ ๐ โ ๐ ๐ For low level excitation for p-type material, ๐
๐ โ๐ ๐๐ ๐ ๐๐ โ ๐ ๐ = ๐บ ๐ โ ๐ ๐ S = ~ 102 cm/sec for Si, Ge 1 ~ 10 cm/sec for oxidized Si surface 104 ~ 105 cm/sec for GaAs To reduce surface recombination velocity in GaAs LED, use AlGaAs heterostructure barrier at surface.
30
From continuity equation at steady state,
For example, G n-type p(x) x ๐ฝ๐(0) โp(x) p0 ๐(0) x = 0 x From continuity equation at steady state, ๐ 2 โ๐(๐ฅ) ๐ ๐ฅ 2 โ โ๐ ๐ฅ ๐ท ๐ ๐ ๐ + ๐บ ๐ท ๐ =0 ๐๐(0) ๐๐ก =๐บโ โ๐ ๐ ๐ โ 1 ๐ ๐ปโ ๐ฝ ๐ =0 ๐ฝ ๐ ๐ฅ =โ๐ ๐ท ๐ ๐โ๐ ๐๐ฅ Boundary conditions ๐ท ๐ ๐โ ๐ ๐ ๐๐ฅ = ๐บ ๐ โ ๐ ๐ ๐ฝ ๐ (0)= โ๐๐บ ๐ โ ๐ ๐ โ๐(โ) = ๐ ๐ ๐บ
31
The general solution of the differential equation
๐ด ๐ 2 ๐(๐ฅ) ๐ ๐ฅ 2 โ ๐ ๐ฅ ๐ถ +๐ต=0 ๐(๐ฅ)=๐ต๐ถ+ ๐พ 1 exp โ ๐ฅ ๐ด๐ถ + ๐พ 2 exp ๐ฅ ๐ด๐ถ โ๐(๐ฅ) = ๐ ๐ ๐บ+ ๐พ 1 exp โ ๐ฅ ๐ท ๐ ๐ ๐ ๐พ 2 exp ๐ฅ ๐ท ๐ ๐ ๐ = ๐ ๐ ๐บ+ ๐พ 1 exp โ ๐ฅ ๐ฟ ๐ + ๐พ 2 exp ๐ฅ ๐ฟ ๐ โ๐(โ) = ๐ ๐ ๐บ+ ๐พ 1 (0)+ ๐พ 2 (โ) โ๐(โ) = ๐ ๐ ๐บ โ๐(๐ฅ)= ๐ ๐ ๐บ+ ๐พ 1 exp โ ๐ฅ ๐ฟ ๐ ๐ท ๐ ๐โ ๐ ๐ ๐๐ฅ = ๐ท ๐ ๐โ๐(0) ๐๐ฅ =๐ท ๐ ๐พ 1 โ ๐ ๐ณ ๐ =๐บ ๐ โ ๐ ๐ = ๐บ ๐ โ๐(0) ๐ท ๐ ๐โ ๐ ๐ ๐๐ฅ = ๐บ ๐ โ ๐ ๐ ๐พ 1 = โ ๐ท ๐ ๐ณ ๐ ๐บ ๐ โ๐(0) = โ ๐ท ๐ ๐ณ ๐ ๐บ ๐ (๐บ ๐ ๐ + ๐พ 1 ) ๐พ 1 =โ (๐บ ๐ ๐ )( ๐ ๐ ๐ ๐ / ๐ฟ ๐ ) 1+ ๐ ๐ ๐ ๐ ๐ฟ ๐
32
=๐ ๐ ๐บโ ( ๐ ๐ ๐บ)( ๐ ๐ ๐ ๐ / ๐ฟ ๐ ) 1+ ๐ ๐ ๐ ๐ ๐ฟ ๐ ๐ โ๐ฅ/ ๐ฟ ๐ โ๐(๐ฅ)
=๐ ๐ ๐บโ ( ๐ ๐ ๐บ)( ๐ ๐ ๐ ๐ / ๐ฟ ๐ ) 1+ ๐ ๐ ๐ ๐ ๐ฟ ๐ ๐ โ๐ฅ/ ๐ฟ ๐ โ๐(๐ฅ) โ๐(๐ฅ) ๐ ๐ ๐บ ๐บ ๐ =0 1 increasing ๐บ ๐ x ๐บ ๐ =โ Ohmic contact: ๐บ ๐ =โ โ๐(0)=0 ๐(0)= ๐ 0
33
Steady-State Relationships (Multi-Level)
Let DIT(E) be the density of interfacial traps at arbitrarily chosen energy E. [ /cm2โeV] ๐ท ๐ผ๐ ๐ธ ๐๐ธ : number of interfacial traps/cm2 with energies between E and E + dE. ๐ ๐๐ ๐ท ๐ผ๐ ๐ธ ๐๐ธ single level multi-level โด incremental net recombination rate for energies between E and E + dE. ๐๐
๐ = ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ โ๐ท ๐ผ๐ ๐ธ ๐๐ธ ๐
๐ = ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ ๐ ๐๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ Overall net recombination rate over all band gap energies, ๐
๐ = ๐ธ ๐ ๐ธ ๐ถ ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ โ๐ท ๐ผ๐ ๐ธ ๐๐ธ
34
Specialized Steady-State Relationships
Flat Band For low level excitation for n-type material and assuming flat band, ๐ ๐ ๐ข๐๐๐๐๐ โ0, ๐ ๐ 0 โ ๐ ๐ท , โ๐ ๐ = โ๐ ๐ โช ๐ ๐ 0 โด๐ ๐ ๐ ๐ โ ๐ ๐ 2 โ ๐ ๐ 0 โ๐ ๐ ๐ ๐๐ , ๐ ๐๐ : comparable 1 ๐ ๐๐ ๐ ๐ + ๐ 1๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ โ 1 ๐ ๐๐ ๐ ๐ 0 + ๐ 1๐ + ๐ 1๐ ๐ ๐๐ ๐
๐ = ๐ธ ๐ ๐ธ ๐ถ ๐ ๐๐ โ๐ท ๐ผ๐ ๐ธ 1+ ๐ 1๐ ๐ ๐ 0 + ๐ ๐๐ ๐ ๐๐ ๐ 1๐ ๐ ๐ 0 ๐๐ธ โ๐ ๐ = ๐บ ๐ โ ๐ ๐ constant; dimension of velocity, ๐บ ๐ . Similarly for p-type, ๐
๐ = ๐ธ ๐ ๐ธ ๐ถ ๐ ๐๐ โ๐ท ๐ผ๐ ๐ธ 1+ ๐ 1๐ ๐ ๐ 0 + ๐ ๐๐ ๐ ๐๐ ๐ 1๐ ๐ ๐ 0 ๐๐ธ โ๐ ๐ = ๐บ ๐ โ ๐ ๐
35
๐ธ ๐น โฒ below ๐ธ ๐ the band gap
Usually, DIT and capture coefficients are approximately constant (energy-independent) over the middle portion of the band gap, 1+ ๐ 1๐ ๐ ๐ 0 + ๐ ๐๐ ๐ ๐๐ ๐ 1๐ ๐ ๐ 0 =1+ ๐ ๐ ๐ ๐ท ๐ ๐ธโ ๐ธ ๐ /๐๐ + ๐ ๐๐ ๐ ๐๐ ๐ ๐ธ ๐ โ๐ธ /๐๐ โ1 if ๐ธ ๐น โฒ โค๐ธโค ๐ธ ๐น โโ for ๐ธโค ๐ธ ๐น โฒ , ๐ธโฅ ๐ธ ๐น ๐ธ ๐น โฒ being the energy in the band gap where ๐ ๐ธ ๐ โ ๐ธ ๐น โฒ /๐๐ โ ๐ ๐ท ๐ ๐ ๐ ๐ ๐ ๐ท ๐ ๐๐ ๐ ๐๐ ๐ ๐ธ ๐ โ๐ธ /๐๐ =1 ๐ธ ๐น โฒ below ๐ธ ๐ the band gap At ๐ธ=๐ธ ๐น โฒ or ๐ธ= ๐ธ ๐น, ๐ ๐ธโ ๐ธ ๐ /๐๐ + ๐ ๐๐ ๐ ๐๐ ๐ ๐ธ ๐ โ๐ธ /๐๐ โ ๐ ๐ท ๐ ๐ โด1+ ๐ 1๐ ๐ ๐ 0 + ๐ ๐๐ ๐ ๐๐ ๐ 1๐ ๐ ๐ 0 โ2 ๐ ๐ธโ ๐ธ ๐ /๐๐ + ๐ ๐๐ ๐ ๐๐ ๐ ๐ธ ๐ โ๐ธ /๐๐ โช ๐ ๐ท ๐ ๐ For ๐ธ ๐น โฒ โค๐ธโค ๐ธ ๐น โด1+ ๐ 1๐ ๐ ๐ 0 + ๐ ๐๐ ๐ ๐๐ ๐ 1๐ ๐ ๐ 0 โ1
36
For ๐ธโค ๐ธ ๐น โฒ , ๐ธโฅ ๐ธ ๐น ๐ ๐ธโ ๐ธ ๐ /๐๐ + ๐ ๐๐ ๐ ๐๐ ๐ ๐ธ ๐ โ๐ธ /๐๐ โซ ๐ ๐ท ๐ ๐ โด1+ ๐ 1๐ ๐ ๐ 0 + ๐ ๐๐ ๐ ๐๐ ๐ 1๐ ๐ ๐ 0 โโ The denominator of the ๐บ ๐ integrand is approximately unity in the midgap region where DIT and the capture coefficients are assumed to be approximately constant. Outside this range the denominator becomes large and the contribution to the overall integram is small. ๐บ ๐ โ ๐ธ ๐น โฒ ๐ธ ๐น ๐ ๐๐ ๐ท ๐ผ๐ ๐ธ ๐๐ธโ ๐ ๐๐ ๐ท ๐ผ๐ ๐ธ ๐น โ ๐ธ ๐น โฒ compare with ๐บ ๐ = ๐ ๐๐ ๐ ๐๐ for single level.
37
Depleted Surface If non-equilibrium conditions exist such that both nsโ0 and ps โ 0 at the surface of a semiconductor, Rs by inspection reduces to ๐
๐ = ๐ธ ๐ ๐ธ ๐ถ ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ ๐ ๐๐ ๐ ๐ + ๐ 1๐ โ๐ท ๐ผ๐ ๐ธ ๐๐ธ โ ๐ธ ๐ ๐ธ ๐ถ โ ๐ ๐ 2 ๐ 1๐ ๐ ๐๐ + ๐ 1๐ ๐ ๐๐ โ๐ท ๐ผ๐ ๐ธ ๐๐ธ=โ ๐ธ ๐ ๐ธ ๐ถ ๐ ๐๐ ๐ ๐๐ ๐ท ๐ผ๐ ๐ธ ๐๐ธ ๐ ๐๐ ๐ ๐ธโ ๐ธ ๐ ๐๐ + ๐ ๐๐ ๐ ๐ธ ๐ โ๐ธ ๐๐ ๐ ๐ = ๐บ ๐ dimension of velocity, called surface generation velocity, ๐บ ๐ . ๐ ๐ โ โโ โ ๐ ๐๐ ๐ ๐๐ ๐ท ๐ผ๐ ๐ธ ๐๐ธ ๐ ๐๐ ๐ ๐ธโ ๐ธ ๐ ๐๐ + ๐ ๐๐ ๐ ๐ธ ๐ โ๐ธ ๐๐ = ๐ 2 ๐ ๐๐ ๐ ๐๐ ๐๐ ๐ท ๐ผ๐ ๐บ ๐ =โ ๐
๐ = ๐ ๐ ๐ ๐
38
Carrier Continuity Consider a uniformly doped n-type material and uniformly injected excess majority carrier density โ๐ ๐ก where โ๐ ๐ก โช ๐ 0 . ๐ปโ ๐ ๐,๐ก =โ ๐ ๐ โ๐(๐ก) Poissonโs equation ๐ฝ ๐ (๐,๐ก)=๐ ๐ ๐ ๐(๐ก) ๐ ๐,๐ก Current density equation ๐โ๐(๐ก) ๐๐ก =โ โ๐ ๐,๐ก ๐ ๐ + 1 ๐ ๐ปโ ๐ฝ ๐ (๐,๐ก) Continuity equation ๐โ๐(๐ก) ๐๐ก =โ โ๐ ๐ก ๐ ๐ + 1 ๐ ๐ปโ ๐ฝ ๐ (๐,๐ก) =โ โ๐ ๐,๐ก ๐ ๐ + 1 ๐ ๐ปโ๐ ๐ ๐ ๐(๐ก) ๐ ๐,๐ก =โ โ๐ ๐ก ๐ ๐ + ๐ ๐ ๐(๐ก)๐ปโ ๐ ๐,๐ก =โ โ๐ ๐ก ๐ ๐ โ ๐ ๐ ๐ ๐ ( ๐ 0 +โ๐ ๐ก )โ๐(๐ก) =โ 1 ๐ ๐ + ๐ ๐ ๐ ๐ 0 ๐ โ๐(๐ก) =โ 1 ๐ ๐ + ๐ ๐ โ๐(๐ก)
39
If the injection process is turned off at t =0,
the solution is โ๐(๐ก)=โ๐ 0 ๐๐ฅ๐ โ 1 ๐ ๐ + ๐ ๐ ๐ก =โ๐ 0 ๐๐ฅ๐ โ 1 ๐ ๐ ๐ ๐ ๐ก majority carrier decay where ๐ ๐ = ๐ ๐ = ๐ ๐ ๐ ๐ ๐ 0 called dielectric relaxation time. ๐ ๐ =๐๐=๐ถ ๐ ๐ด โR ๐ด ๐ =๐
๐ถ In most case ๐ ๐ is much smaller than ๐ ๐ and the excess majority carriers are removed from the sample at the dielectric relaxation time before they have time to recombine. Physically, the excess majority carriers produce an electric field which terminates on the contact or surface. This induced electric field than sweeps the excess majority carriers out of the sample at the dielectric relaxation time, reducing the field to zero.
40
Let us now continue our argument by assuming that it is possible to inject a uniform concentration of excess minority carriers โ๐ ๐ก into the same uniform n-type sample. set ๐ 0 โชโ๐ ๐ก << ๐ 0 ๐ปโ ๐ ๐,๐ก =โ ๐ ๐ โ๐(๐ก) Poissonโs equation ๐ฝ ๐ (๐,๐ก)=๐ ๐ ๐ ๐๐๐ก) ๐ ๐,๐ก Current density equation ๐โ๐(๐ก) ๐๐ก =โ โ๐ ๐ก ๐ ๐ + 1 ๐ ๐ปโ ๐ฝ ๐ (๐,๐ก) Continuity equation ๐โ๐(๐ก) ๐๐ก =โ โ๐ ๐,๐ก ๐ ๐ + 1 ๐ ๐ปโ ๐ฝ ๐ (๐,๐ก) =โ 1 ๐ ๐ + ๐ ๐ ๐ โ๐(๐ก) ๐ โ๐(๐ก) the solution is โ๐(๐ก)= โ๐ ๐ ๐ ๐ ๐ exp ๐ก ๐ ๐ โ ๐ ๐ ๐ ๐ where = ๐ ๐ ๐ ๐ โ๐(0) ๐ ๐ dielectric relaxation time for the excess minority carriers
41
This is the concept of internal space charge neutrality.
since โ๐ 0 is relatively small, ๐ ๐ for the excess minority carriers is usually much larger than ๐ ๐ . โ๐(๐ก)โโ๐ 0 exp โ ๐ก ๐ ๐ The excess minority carriers decay by recombination. The injection of excess minority carriers produces an electric field that terminates on the surface or on the contact. This electric field causes excess majority carriers to move into the sample at their very short dielectric relaxation time. At this short time, โ๐=โ๐ internally everywhere and the excess electrons and holes decay at the longer excess carrier life times. This is the concept of internal space charge neutrality. For example) injecting 1012/cm3 excess holes into an n-type GaAs with n0 = 1014/cm3. Assuming ๐ ๐ = ๐ ๐ โ 10 โ9 sec, ni = 107/cm3, ๐ ๐ =12.5, ๐ ๐ =8ร cm2/Vโsec, ๐ ๐ =5ร cm2 /Vโsec. ๐ 0 = ๐๐ 2 ๐ /cm3 =1/ ๐๐ 3 ๐ 0 <<โ๐(0)โช ๐ 0 majority carrier relaxation time, = ๐ 0 ๐ ๐ ๐ ๐ ๐ ๐ 0 โ 10 โ11 ๐ ๐๐ ๐ ๐๐ minority carrier relaxation time, = ๐ 0 ๐ ๐ ๐ ๐ ๐ โ๐(0) โ 10 โ8 ๐ ๐๐ ๐ ๐โ๐ ๐ ๐๐ โช ๐ ๐ = ๐ ๐ โช ๐ ๐โ๐ The material is space-charged neutral for times greater than ๐ ๐๐ โ 10 โ11 ๐ ๐๐.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.