Presentation is loading. Please wait.

Presentation is loading. Please wait.

Plamen Kamenov Physics 502 Advanced Quantum Mechanics

Similar presentations


Presentation on theme: "Plamen Kamenov Physics 502 Advanced Quantum Mechanics"β€” Presentation transcript:

1 Plamen Kamenov Physics 502 Advanced Quantum Mechanics
Quantum Computing Plamen Kamenov Physics 502 Advanced Quantum Mechanics

2 Why Do We Need Quantum Computers?
Take a spin-1/2 system: Probability 𝑆 𝑧 spin up eigenvalue = 𝑓 ++ + 𝑓 + βˆ’ = π‘Ž 2 Add columns Probability 𝑆 𝑧 spin down eigenvalue = 𝑓 βˆ’+ + 𝑓 βˆ’ βˆ’ = 𝑏 2 |πœ“ = π‘Ž 𝑏 Probability 𝑆 𝑦 spin up eigenvalue = 𝑓 ++ + 𝑓 βˆ’ + = 1 2 ( π‘Ž 2 + 𝑏 2 ) Add rows Probability 𝑆 𝑦 spin down eigenvalue = 𝑓 βˆ’βˆ’ + 𝑓 + βˆ’ = 1 2 ( π‘Ž 2 +𝑏 2 ) Normalized state with π‘Ž 2 + 𝑏 2 =1 π‘Ž,𝑏 πœ– ℝ Probability 𝑆 π‘₯ spin up eigenvalue = 𝑓 ++ + 𝑓 βˆ’βˆ’ = π‘Ž+𝑏 2 Add diagonals Probability 𝑆 π‘₯ spin down eigenvalue = 𝑓 βˆ’+ + 𝑓 + βˆ’ = π‘Žβˆ’π‘ 2 Write the probabilities as dependent on 2 indices: 𝑓 + - 1 2 π‘Ž π‘Žπ‘ 1 2 π‘Ž 2 βˆ’ 1 4 π‘Žπ‘ 1 2 𝑏 2 βˆ’ 1 4 π‘Žπ‘ 1 2 𝑏 π‘Žπ‘ Only sums of 𝑓 terms can be probabilities! Any 𝑓 term can be negative!

3 Can We Observe This Discrepancy?
Imagine a simple optics experiment: πœƒ 1 πœƒ 2 Detector 1 Detector 2 2-photon emission Ordinary Ray Extraordinary Ray Excited atom Crystal Crystal Polarized light is analogous to the spin-1/2 system By changing the crystal angles, we ask about the probability of mixing spin components (i.e. 𝑆 𝑧 , 𝑆 π‘₯ eigenstates) Quantum version of Malus’ Law: 𝑝 𝐸𝐸 = 𝑝 𝑂𝑂 = cos 2 ( πœƒ 1 βˆ’ πœƒ 2 )

4 Quantum Probability vs. Classical Probability
My detector: πœƒ 1 Your detector: πœƒ 2 = πœƒ Experiment 1: 90Β° 90Β° 60Β° 120Β° 60Β° 120Β° 30Β° 150Β° 30Β° 150Β° 0Β° 0Β° Coincidence Probability: 2 3 Experiment 2: 90Β° 90Β° 60Β° 120Β° 60Β° 120Β° 30Β° 150Β° 30Β° 150Β° 0Β° 0Β° Coincidence Probability: 0 Quantum Probability: p EE + p OO = cos 2 πœƒ 2 βˆ’ πœƒ 1 = cos = 3 4

5 What Could Quantum Computers Do?
Grover’s Algorithm: How quickly can you find a name in a phonebook? Classically, you need to search N/2 names to find a name with probability Β½ Set up state: πœ“ = 1 𝑁 π‘₯=0 π‘βˆ’1 |π‘₯⟩ ⟨0| ⟨1| ⟨2| βŸ¨π‘βˆ’1| βŸ¨πœ”| … ⟨π‘₯|πœ“βŸ© Apply the β€œquantum oracle” operator: π‘ˆ πœ” =πΌβˆ’2|πœ”βŸ©βŸ¨πœ”| … ⟨π‘₯| π‘ˆ πœ” |πœ“βŸ© Rotates desired state in complex plane by phase 𝑒 π‘–πœ‹ Apply the Grover diffusion operator: π‘ˆ πœ“ =2|πœ“βŸ©βŸ¨πœ“|βˆ’πΌ … ⟨π‘₯| π‘ˆ πœ“ π‘ˆ πœ” |πœ“βŸ© Repeat or measure the probability you’re in state |πœ”βŸ©: p πœ” =βŸ¨πœ” π‘ˆ πœ“ π‘ˆ πœ” πœ“βŸ©

6 Is Grover’s Algorithm Quantum Mechanical?
Both operators are unitary and Hermitian: π‘ˆ πœ” π‘ˆ πœ” † =π‘ˆ πœ” † π‘ˆ πœ” =(πΌβˆ’2|πœ”βŸ©βŸ¨πœ”|)(πΌβˆ’2|πœ”βŸ©βŸ¨πœ”|) = πΌβˆ’2|πœ”βŸ©βŸ¨πœ” βˆ’2 πœ”βŸ©βŸ¨πœ” +4 πœ”βŸ©βŸ¨πœ”|=𝐼 π‘ˆ πœ“ π‘ˆ πœ“ † = π‘ˆ πœ“ † π‘ˆ πœ“ =(2|πœ“βŸ©βŸ¨πœ“|βˆ’πΌ) 2 πœ“ πœ“ βˆ’πΌ =4|πœ“βŸ©βŸ¨πœ“|βˆ’2|πœ“βŸ©βŸ¨πœ“|βˆ’2|πœ“βŸ©βŸ¨πœ“|+𝐼=𝐼 Following the algorithm, all amplitudes are positive: You only need to search π’ͺ( 𝑁 ) names to find a name with probability ~1

7 References Feynman, Richard P. β€œSimulating Physics with Computers.” International Journal of Theoretical Physics, vol. 21, no. 6-7, 1982, pp. 467–488., doi: /bf Grover, Lov K. β€œA Fast Quantum Mechanical Algorithm for Database Search.” Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing - STOC '96, 1996, doi: /


Download ppt "Plamen Kamenov Physics 502 Advanced Quantum Mechanics"

Similar presentations


Ads by Google