Presentation is loading. Please wait.

Presentation is loading. Please wait.

Partial fractions Repeated factors.

Similar presentations


Presentation on theme: "Partial fractions Repeated factors."β€” Presentation transcript:

1 Partial fractions Repeated factors

2 Algebra: Partial fractions
KUS objectives BAT put expressions into partial fractions where the denominator has repeated factors or the original fraction is improper (top heavy) Starter: xx

3 4π‘₯βˆ’1=𝐴(π‘₯βˆ’1)+𝐡 WB7a write a) 4π‘₯βˆ’1 π‘₯βˆ’1 2 in partial fractions
= 𝐴 (π‘₯βˆ’1) + 𝐡 π‘₯βˆ’1 2 Make the denominators the same 4π‘₯βˆ’1 π‘₯βˆ’1 2 = 𝐴(π‘₯βˆ’1) (π‘₯βˆ’1)(π‘₯βˆ’1) + 𝐡 π‘₯βˆ’1 2 Now equate the numerators 4π‘₯βˆ’1=𝐴(π‘₯βˆ’1)+𝐡 Let π‘₯=βˆ’ then =(0)+𝐡) gives 𝐡=3 Let π‘₯=2 then =𝐴(1)+𝐡 gives 𝐴=4 4π‘₯βˆ’1 π‘₯βˆ’1 2 = 4 (π‘₯βˆ’1) π‘₯βˆ’1 2

4 11 π‘₯ 2 +14π‘₯+5=𝐴(π‘₯+1)(2π‘₯+1)+ 𝐡(2π‘₯+1)+ 𝐢 π‘₯+1 2
WB7b write b) π‘₯ 2 +14π‘₯+5 π‘₯+1 2 (2π‘₯+1) in partial fractions = 𝐴 (π‘₯+1) + 𝐡 π‘₯ 𝐢 2π‘₯+1 Make the denominators the same 11 π‘₯ 2 +14π‘₯+5 π‘₯+1 2 (2π‘₯+1) = 𝐴(π‘₯+1)(2π‘₯+1) π‘₯+1 2 (2π‘₯+1) + 𝐡(2π‘₯+1) π‘₯+1 2 (2π‘₯+1) + 𝐢 π‘₯ π‘₯+1 2 (2π‘₯+1) Now equate the numerators 11 π‘₯ 2 +14π‘₯+5=𝐴(π‘₯+1)(2π‘₯+1)+ 𝐡(2π‘₯+1)+ 𝐢 π‘₯+1 2 Let π‘₯=βˆ’ then βˆ’14+5= 0 +𝐡 βˆ’1 +(0) gives 𝐡=-2 Let π‘₯=βˆ’ then βˆ’ = 𝐢 1 4 gives 𝐢=3 Let π‘₯= then =𝐴 1 +𝐡 1 +𝐢 1 gives 𝐴=4 11 π‘₯ 2 +14π‘₯+5 π‘₯+1 2 (2π‘₯+1) = 4 (π‘₯+1) βˆ’ 2 π‘₯ π‘₯+1

5 3 π‘₯ 2 +18=𝐴 2+π‘₯ 2 +𝐡(1βˆ’2π‘₯)(2+π‘₯)+ 𝐢(1βˆ’2π‘₯)
WB7c write c) 3 π‘₯ (1βˆ’2π‘₯) 2+π‘₯ in partial fractions Include a repeated factor term when usig partial fractions 3 π‘₯ (1βˆ’2π‘₯) 2+π‘₯ 2 = 𝐴 (1βˆ’2π‘₯) + 𝐡 2+π‘₯ + 𝐢 2+π‘₯ 2 Now equate the numerators 3 π‘₯ 2 +18=𝐴 2+π‘₯ 2 +𝐡(1βˆ’2π‘₯)(2+π‘₯)+ 𝐢(1βˆ’2π‘₯) Let π‘₯=βˆ’ then = 𝐢(5) gives C= 6 Let π‘₯= then =𝐴 gives 𝐴=3 Let π‘₯= then =𝐴 4 +𝐡 2 +𝐢 1 gives 𝐡=0 3 π‘₯ (1βˆ’2π‘₯) 2+π‘₯ 2 = 3 (1βˆ’2π‘₯) π‘₯ 2

6 Partial fractions Top-Heavy fractions

7 Dealing with Improper Fractions
The β€˜degree’ of a polynomial is the highest power, e.g. a quadratic has degree 2. An algebraic fraction is improper if the degree of the numerator is at least the degree of the denominator.

8 Divide the numerator by the denominator to find the β€˜whole’ part
WB8 write 3 π‘₯ 2 βˆ’3π‘₯βˆ’2 (π‘₯βˆ’1)(π‘₯βˆ’2) in partial fractions Remember, Algebraically an β€˜improper’ fraction is one where the degree (power) of the numerator is equal to or exceeds that of the denominator 3 π‘₯ 2 βˆ’3π‘₯βˆ’2 (π‘₯βˆ’1)(π‘₯βˆ’2) = 3 π‘₯ 2 βˆ’3π‘₯βˆ’2 π‘₯ 2 βˆ’3π‘₯+2 3 π‘₯ 2 βˆ’9π‘₯βˆ’6 3 Divide the numerator by the denominator to find the β€˜whole’ part π‘₯ 2 βˆ’3π‘₯ π‘₯ 2 βˆ’3π‘₯βˆ’2 6π‘₯βˆ’8 3 π‘₯ 2 βˆ’3π‘₯βˆ’2 (π‘₯βˆ’1)(π‘₯βˆ’2) = π‘₯βˆ’8 (π‘₯βˆ’1)(π‘₯βˆ’2)

9 Now equate the numerators
WB8 (cont) π‘₯ 2 βˆ’3π‘₯βˆ’2 (π‘₯βˆ’1)(π‘₯βˆ’2) = π‘₯βˆ’8 (π‘₯βˆ’1)(π‘₯βˆ’2) Remember, Algebraically an β€˜improper’ fraction is one where the degree (power) of the numerator is equal to or exceeds that of the denominator 6π‘₯βˆ’8 (π‘₯βˆ’1)(π‘₯βˆ’2) = 𝐴 π‘₯βˆ’1 + 𝐡 π‘₯βˆ’2 Now equate the numerators 6π‘₯βˆ’8=𝐴(π‘₯βˆ’2)+𝐡(π‘₯βˆ’1) Let π‘₯= gives B = 4 Let π‘₯=1 gives 𝐴=2 3 π‘₯ 2 βˆ’3π‘₯βˆ’2 (π‘₯βˆ’1)(π‘₯βˆ’2) = π‘₯βˆ’1 + 4 π‘₯βˆ’2

10 WB8 (Alternative) write 3 π‘₯ 2 βˆ’3π‘₯βˆ’2 (π‘₯βˆ’1)(π‘₯βˆ’2) in partial fractions
Write as whole part and partial fractoons 3 π‘₯ 2 βˆ’3π‘₯βˆ’2 (π‘₯βˆ’1)(π‘₯βˆ’2) = 𝑃+ 𝑄 π‘₯βˆ’1 + 𝑅 π‘₯βˆ’2 Now equate the numerators 3 π‘₯ 2 βˆ’3π‘₯βˆ’2=𝑃 π‘₯βˆ’1 π‘₯βˆ’2 +𝑄 π‘₯βˆ’2 +𝑅(π‘₯βˆ’1) Let π‘₯= then βˆ’3βˆ’2= 0 +𝑄 βˆ’1 +(0) gives 𝑄=2 Let π‘₯= then βˆ’6βˆ’2= 𝑅(1) gives 𝑅=4 Let π‘₯= then βˆ’2=𝑃 2 +𝑄 βˆ’2 +𝑅(βˆ’1) gives 𝑃=3 3 π‘₯ 2 βˆ’3π‘₯βˆ’2 (π‘₯βˆ’1)(π‘₯βˆ’2) =3+ 2 π‘₯βˆ’1 + 4 π‘₯βˆ’2

11 WB9 write 9 π‘₯ 2 +20π‘₯βˆ’10 (π‘₯+2)(3π‘₯βˆ’1) in partial fractions
Write as whole part and partial fractoons 9 π‘₯ 2 +20π‘₯βˆ’10 (π‘₯+2)(3π‘₯βˆ’1) = 𝑃+ 𝑄 π‘₯+2 + 𝑅 3π‘₯βˆ’1 Now equate the numerators 9 π‘₯ 2 +20π‘₯βˆ’10=𝑃 π‘₯+2 3π‘₯βˆ’1 +𝑄 3π‘₯βˆ’1 +𝑅(π‘₯+2) Let π‘₯=βˆ’ then βˆ’40βˆ’10= 0 +𝑄 βˆ’7 +(0) gives 𝑄=2 Let π‘₯= then βˆ’10= 𝑅( 7 3 ) gives 𝑅=βˆ’1 Let π‘₯= then βˆ’10=𝑃 βˆ’2 +𝑄 βˆ’1 +𝑅(2) gives 𝑃=3 9 π‘₯ 2 +20π‘₯βˆ’10 (π‘₯+2)(3π‘₯βˆ’1) =3+ 2 π‘₯+2 βˆ’ 1 3π‘₯βˆ’1

12 One thing to improve is –
KUS objectives BAT put expressions into partial fractions where the denominator has repeated factors or the original fraction is improper (top heavy) self-assess One thing learned is – One thing to improve is –

13 END


Download ppt "Partial fractions Repeated factors."

Similar presentations


Ads by Google