Download presentation
Presentation is loading. Please wait.
1
Partial fractions Repeated factors
2
Algebra: Partial fractions
KUS objectives BAT put expressions into partial fractions where the denominator has repeated factors or the original fraction is improper (top heavy) Starter: xx
3
4π₯β1=π΄(π₯β1)+π΅ WB7a write a) 4π₯β1 π₯β1 2 in partial fractions
= π΄ (π₯β1) + π΅ π₯β1 2 Make the denominators the same 4π₯β1 π₯β1 2 = π΄(π₯β1) (π₯β1)(π₯β1) + π΅ π₯β1 2 Now equate the numerators 4π₯β1=π΄(π₯β1)+π΅ Let π₯=β then =(0)+π΅) gives π΅=3 Let π₯=2 then =π΄(1)+π΅ gives π΄=4 4π₯β1 π₯β1 2 = 4 (π₯β1) π₯β1 2
4
11 π₯ 2 +14π₯+5=π΄(π₯+1)(2π₯+1)+ π΅(2π₯+1)+ πΆ π₯+1 2
WB7b write b) π₯ 2 +14π₯+5 π₯+1 2 (2π₯+1) in partial fractions = π΄ (π₯+1) + π΅ π₯ πΆ 2π₯+1 Make the denominators the same 11 π₯ 2 +14π₯+5 π₯+1 2 (2π₯+1) = π΄(π₯+1)(2π₯+1) π₯+1 2 (2π₯+1) + π΅(2π₯+1) π₯+1 2 (2π₯+1) + πΆ π₯ π₯+1 2 (2π₯+1) Now equate the numerators 11 π₯ 2 +14π₯+5=π΄(π₯+1)(2π₯+1)+ π΅(2π₯+1)+ πΆ π₯+1 2 Let π₯=β then β14+5= 0 +π΅ β1 +(0) gives π΅=-2 Let π₯=β then β = πΆ 1 4 gives πΆ=3 Let π₯= then =π΄ 1 +π΅ 1 +πΆ 1 gives π΄=4 11 π₯ 2 +14π₯+5 π₯+1 2 (2π₯+1) = 4 (π₯+1) β 2 π₯ π₯+1
5
3 π₯ 2 +18=π΄ 2+π₯ 2 +π΅(1β2π₯)(2+π₯)+ πΆ(1β2π₯)
WB7c write c) 3 π₯ (1β2π₯) 2+π₯ in partial fractions Include a repeated factor term when usig partial fractions 3 π₯ (1β2π₯) 2+π₯ 2 = π΄ (1β2π₯) + π΅ 2+π₯ + πΆ 2+π₯ 2 Now equate the numerators 3 π₯ 2 +18=π΄ 2+π₯ 2 +π΅(1β2π₯)(2+π₯)+ πΆ(1β2π₯) Let π₯=β then = πΆ(5) gives C= 6 Let π₯= then =π΄ gives π΄=3 Let π₯= then =π΄ 4 +π΅ 2 +πΆ 1 gives π΅=0 3 π₯ (1β2π₯) 2+π₯ 2 = 3 (1β2π₯) π₯ 2
6
Partial fractions Top-Heavy fractions
7
Dealing with Improper Fractions
The βdegreeβ of a polynomial is the highest power, e.g. a quadratic has degree 2. An algebraic fraction is improper if the degree of the numerator is at least the degree of the denominator.
8
Divide the numerator by the denominator to find the βwholeβ part
WB8 write 3 π₯ 2 β3π₯β2 (π₯β1)(π₯β2) in partial fractions Remember, Algebraically an βimproperβ fraction is one where the degree (power) of the numerator is equal to or exceeds that of the denominator 3 π₯ 2 β3π₯β2 (π₯β1)(π₯β2) = 3 π₯ 2 β3π₯β2 π₯ 2 β3π₯+2 3 π₯ 2 β9π₯β6 3 Divide the numerator by the denominator to find the βwholeβ part π₯ 2 β3π₯ π₯ 2 β3π₯β2 6π₯β8 3 π₯ 2 β3π₯β2 (π₯β1)(π₯β2) = π₯β8 (π₯β1)(π₯β2)
9
Now equate the numerators
WB8 (cont) π₯ 2 β3π₯β2 (π₯β1)(π₯β2) = π₯β8 (π₯β1)(π₯β2) Remember, Algebraically an βimproperβ fraction is one where the degree (power) of the numerator is equal to or exceeds that of the denominator 6π₯β8 (π₯β1)(π₯β2) = π΄ π₯β1 + π΅ π₯β2 Now equate the numerators 6π₯β8=π΄(π₯β2)+π΅(π₯β1) Let π₯= gives B = 4 Let π₯=1 gives π΄=2 3 π₯ 2 β3π₯β2 (π₯β1)(π₯β2) = π₯β1 + 4 π₯β2
10
WB8 (Alternative) write 3 π₯ 2 β3π₯β2 (π₯β1)(π₯β2) in partial fractions
Write as whole part and partial fractoons 3 π₯ 2 β3π₯β2 (π₯β1)(π₯β2) = π+ π π₯β1 + π
π₯β2 Now equate the numerators 3 π₯ 2 β3π₯β2=π π₯β1 π₯β2 +π π₯β2 +π
(π₯β1) Let π₯= then β3β2= 0 +π β1 +(0) gives π=2 Let π₯= then β6β2= π
(1) gives π
=4 Let π₯= then β2=π 2 +π β2 +π
(β1) gives π=3 3 π₯ 2 β3π₯β2 (π₯β1)(π₯β2) =3+ 2 π₯β1 + 4 π₯β2
11
WB9 write 9 π₯ 2 +20π₯β10 (π₯+2)(3π₯β1) in partial fractions
Write as whole part and partial fractoons 9 π₯ 2 +20π₯β10 (π₯+2)(3π₯β1) = π+ π π₯+2 + π
3π₯β1 Now equate the numerators 9 π₯ 2 +20π₯β10=π π₯+2 3π₯β1 +π 3π₯β1 +π
(π₯+2) Let π₯=β then β40β10= 0 +π β7 +(0) gives π=2 Let π₯= then β10= π
( 7 3 ) gives π
=β1 Let π₯= then β10=π β2 +π β1 +π
(2) gives π=3 9 π₯ 2 +20π₯β10 (π₯+2)(3π₯β1) =3+ 2 π₯+2 β 1 3π₯β1
12
One thing to improve is β
KUS objectives BAT put expressions into partial fractions where the denominator has repeated factors or the original fraction is improper (top heavy) self-assess One thing learned is β One thing to improve is β
13
END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.