Download presentation
Presentation is loading. Please wait.
1
Hadronic States with Large Multiquark Component
Bing-Song Zou ( Institute of High Energy Physics, CAS, Beijing )
2
SU(3) 3q-quark model for baryons 1/2 + spin-parity 3/2 +
n(udd) p(uud) -(dds) 0 (uds) 0 + (uus) -(dss) 0(uss) (sss) △0 △- △+ △++ 0 *- *+ (ddd) (udd) (uud) (uuu) (dds) (uds) (uus) *- *0 (uss) (dss) - 1232 1385 1530 1672 Successful for spatial ground states ! Prediction m- 1670 MeV experiment m- 0.29 MeV
3
An outstanding problem for the classical 3q model
Mass order reverse problem for the lowest excited baryons uud (L=1) ½ - ~ N*(1535) should be the lowest uud (n=1) ½ + ~ N*(1440) uds (L=1) ½ - ~ L*(1405) harmonic oscillator ( 2n + L + 3/2 ) hw To understand the full baryon spectroscopy, it is crucial to understand the lowest 1/2- baryon nonet and decuplet first !
4
Nature of N*(1535) and its 1/2- nonet partners
`q `q ½+ [ud] }L=1 u d `q S `q ½ - [ud] [us] }L=0 Zhang et al, hep-ph/ N*(1535) ~ uud (L=1) + e [ud][us]`s + … N*(1440) ~ uud (n=1) + x [ud][ud]`d + … L*(1405) ~ uds (L=1) + e [ud][su]`u + … N*(1535): [ud][us]`s larger coupling to Nh, Nh’, Nf & KL, weaker to Np & KS, and heavier ! B.C. Liu, B.S. Zou, PRL96 (2006) ; PRL98 (2007)
5
The new picture for the 1/2- nonet predicts:
L* [us][ds]`s ~ MeV S* [us][du]`d ~ MeV very different from X* [us][ds]`u ~ MeV q model predictions Capstick 3q model Isgur 3q model
6
} SU(3) breaking } SU(3) allowed J/y decay branching ratio * 104
`p D(1232) / < 1 `S- S(1385) 0.5 `X+ X(1530) 1.5 `p N*(1535) / 3 `S- S(1360) ? `X+ X(1520) ? It is very important to check whether under the S(1385) and X(1520) peaks there are 1/2 - components ? Presumed 3/2 + Sc* and Xc* should also be checked. } SU(3) breaking } SU(3) allowed
7
Nature of D*(1620) and its 1/2- 10-plet partners
J.J.Xie, B.S.Zou, PLB649 (2007) 405 D*(1620) ppN & ppnK+S+ extra-ordinary strong coupling of D*(1620) to rN D*(1620) ½ rN molecule ? MeV S*(1750) ½ K*N molecule ? MeV X*(1950) ½-? K*L molecule ? MeV W*(2160) ½-? K*X molecule ? MeV 1/2- baryon decuplet ~ V8B8 molecules ?
8
`qqqqq in S-state seems more favorable
Conclusion `qqqqq in S-state seems more favorable than qqq with L=1 ! 1/2- baryon nonet ~`qq2q2 state + … 1/2- baryon decuplet ~ V8B8 molecules + …
9
Similar problem for the lowest excited mesons
`qq 3P0 or `q2q2 nonet ? f0(980) `ss , [`u`s ] [us] + [`d`s ] [ds] k(800) `sd , [`s`u ] [ud ] f0(600) `uu +`dd , [`u`d ] [ud] a0(980) `uu -`dd , [`u`s ] [us] - [`d`s] [ds] w(782) `uu +`dd r(770) `uu -`dd K(892) `sd f(1020) `ss `qq 3S1 nonet D*s0(2317) ~`sc (L=1) + [`q`s ] [q c] + DK + … D*s1(2460) ~`sc (L=1) + D*K + … X(3872) ~`cc (L=1) + [`q`c ] [q c] + D*D + …
10
A possible way to distinguish the nature of a0/f0
a0(980)-f0(980) mixing
11
No firm direct observation of a0-f0 mixing available !
Estimations from relevant measured parameters Model predictions `KK `q2q2 `qq For a very recent prediction from chiral unitary approach, cf. Hanhart, Kubis & Pelaez, arXiv: No firm direct observation of a0-f0 mixing available !
12
109 J/y events with BES3 detector +
J.J.Wu, Q.Zhao & B.S.Zou, PRD75(2007) : 109 J/y events with BES3 detector + BR(J/y f f0 f a0 f hp ) ~ (2-20)*10-6 narrow 8 MeV peak ( – ) MeV Clear & precise determination of a0-f0 mixing !
13
J/y fhp a0-f0 mixing BG contributions BR: a0-f0 mixing ~ (2-20)*10-6 , g* ~ 2.6*10-7 , K*K ~ ( )*10-6
14
The lowest L=1 light hadronic states have
Conclusion `q`q q q in S-state seems more favorable than`qq with L=1 ! The lowest L=1 light hadronic states have large multi-quark component . How about higher excited states ? Thank you !
16
`d –`u ~ 0.12 Evidence for components other than 3q in the proton
Deep Inelastic Scattering (DIS) + Drell-Yan (DY) process `d –`u ~ 0.12 Garvey&Peng, Prog. Part. Nucl. Phys.47, 203 (2001) Meson cloud picture: Thomas, Speth, Weise, Oset, Brodsky, Ma, … | p > ~ | uud > + e1 | n ( udd ) p+ (`du ) > + e2 | D++ ( uuu ) p- (`ud ) > + e’ | L (uds) K+ (`su ) > … Penta-quark picture : Riska, Zou, Zhu, … | p > ~ | uud > + e1 | [ud][ud]`d > + e’ | [ud][us]`s > + …
17
Strange properties of N*(1535)
From relative branching ratios of J/y p`N* p (K-`L) / p (`ph) gN*KL /gN*ph /gN*Np ~ 2 : 2 : 1 B.C. Liu, B.S. Zou, PRL96 (2006) ; PRL98 (2007) Evidence for large gN*Nh’ from g p p h’ M.Dugger et al., PRL96 (2006)
18
BES Collaboration, H. B. Li, B. S. Zou, H. C. Chiang, G. X. Peng, J. X
BES Collaboration, H.B.Li, B.S.Zou, H.C.Chiang, G.X.Peng, J.X.Wang, J.J.Zhu, Phys. Lett. B510 (2001) 75
19
N*(1535) in J/y p K-`L + c.c. Nx Nx Events/10MeV Nx
(Arbitrary normalization) PS, eff. corrected Nx BES, Int. J. Mod. Phys. A20 (2005)
20
Evidence for large gN*KL from pp p K+ L
Total cross section and theoretical results with N*(1535), N*(1650), N*(1710), N*(1720) B.C.Liu, B.S.Zou, Phys. Rev. Lett. 96 (2006) pp p K+ L Tsushima,Sibirtsev,Thomas, PRC59 (1999) 369, without including N*(1535)
21
FSI vs N*(1535) contribution in pp p K+ L
B.C.Liu & B.S.Zou, Phys. Rev. Lett. 98 (2007) (reply) A.Sibirtsev et al., Phys. Rev. Lett. 98 (2007) (comment) COSY-TOF data S. Abdel-Samad et al., Phys.Lett.B632:27(2006) FSI N*(1650) etc. Both FSI & N*(1535) are needed !
22
Evidence for large gN*KL from g p K+ L
B. Julia-Diaz, B. Saghai, T.-S.H. Lee, F. Tabakin, Phys. Rev. C 73, (2006)
23
G.Penner&U.Mosel, PRC66 (2002) Partial wave decomposition For the fit to SAPHIR92-94 Data Dashed line : /2 - Dot-dashed line : 3/2+ Shklyar,Lenske&Mosel, PRC72 (2005)
24
Evidence for large gN*Nf from p- p nf & pp ppf
Xie, Zou & Chiang, arXiv: pp ppf r-ex h-ex p-ex with FSI no FSI p- p nf Evasion of OZI rule by N*(1535) !
25
Evidence for small gN*KS from pp p K+L /pp p K+S0
A.Sibirtsev et al., EPJA29 (2006) 363 [2] P.Kowina et al., EPJA22 (2004) 293
26
Pentaquark vs Meson Cloud
Weise, Oset et al: N*(1535) as K L-KS state, L*(1405) as KN state `S u S d u d `S S Pentaquark vs Meson Cloud More solid information on its coupling to KS and its 1/2- octet partner are needed !
27
Role of D++*(1620) in ppnK+S+
J.J.Xie, B.S.Zou, PLB649 (2007) 405 Why D++* ? uuu -- the most experimentally accessible system with 3 identical valence quarks -- suggested the color degree of freedom in 1960s Why D++* (1620) ? JP = ½ The lowest excited uuu state with L=1 in classical 3q models
28
Our present knowledge on D++* resonances
Why ppnK+S+ ? Our present knowledge on D++* resonances mainly comes from p+p experiments and is still very poor. D*++ p p +, r + n S+ K+ ppnK+S D++* production from r+p -- accessible at COSY and CSR
29
Status on the study of ppnK+S+
-- New COSY-11 data Resonance model Incohenrent p/K exchange model also fails to reproduce these data
30
Our calculation for ppnK+S+
D*++(1920) with p+ exchange D*++(1620) with r+ exchange D*++(1620) with p+ t-channel r-exchange plays important role !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.