Download presentation
Presentation is loading. Please wait.
Published byHarjanti Setiabudi Modified over 6 years ago
1
FORECAST MODELS: DYNAMIC(PHYSICAL) VS. STATISTICAL
DYNAMICAL MODEL STATISTICAL MODEL Physical equations! - 7 fund. + few more Statistical equations! - Pure mathematical
2
Statistical models … examples
3
STATISTICAL MODELS … examples
MOS “Model Output Statistics” How are MOS equations made ? Relate dynamical model output to observations of past weather
4
MOS Partially Removes Model Biases!
5
STATISTICAL MODELS (MOS)
Why have MOS ? Partially removes biases! Predicts parameters that dynamical models don’t Visibility, Cloud ceilings ….. Predicts some parameters better than dynamical models (averaged over all cases) Surface temperature, Td, wind
6
AVN MOS BUF EC AVN MOS GUIDANCE 9/26/01 1200 UTC
DAY /SEPT 26 /SEPT /SEPT / HOUR MN/MX TEMP DEWPT CLDS OV OV OV OV OV OV OV OV OV OV OV OV OV OV OV OV OV BK SC WDIR WSPD POP POP QPF / 1/ 1/1 2/ 1/2 1/ 1/1 0/ 0/0 TSV / 0 7/ 0 9/ 0 3/ 1 26/ 0 21/ 0 10/ 0 10/ 0 9/ 0 TSV / / / / 0 PTYPE R R R R R R R R R R R R R R R POZP POSN SNOW / 0/ 0/0 0/ 0/0 0/ 0/0 0/ 0/0 CIG VIS OBVIS N N N N N F F N N N F N N
7
AVN MODEL Station: BUF Lat: Lon: Elev: 217 Closest grid pt: 13.5 km. Initialization Time: UTC PARAMETER/TIME DAY / HOUR /12 26/18 27/00 27/06 27/12 27/18 28/00 28/06 28/12 TEMPS 1000 MB (C) 950 MB (C) 900 MB (C) 850 MB (C) 800 MB (C) THCK MOISTURE 1000 MB DP(C)/RH 6/93 4/5 5/57 6/75 9/95 7/73 7/63 7/60 8/68 850 MB DP(C)/RH -3/92 -1/91 0/91 0/97 -1/97 0/97 1/93 1/89 2/91 700 MB DP(C)/RH-10/93 -10/98 -10/97 -11/95 -12/90 -12/97 -11/94 -10/82 -9/78 500 MB DP(C)/RH-22/76 -25/64 -28/60 -24/77 -24/92 -24/99 -25/94 -24/86 -26/61 PRCPABLE WTR (I CONV PRECIP (IN TOTAL PRECIP (I WIND DD/FFF (Kts) 1000 MB /014 21/009 26/011 30/009 30/009 28/007 30/008 36/011 01/016 850 MB /025 23/021 25/017 28/011 30/011 31/013 32/011 36/014 01/017 700 MB /036 24/029 25/028 26/022 29/013 34/017 35/020 01/024 02/026 500 MB /049 23/045 25/039 25/034 27/021 33/016 00/027 02/038 03/044 250 MB /050 23/054 23/048 24/044 25/027 29/011 00/026 02/039 03/050
8
FORECAST MODELS: DYNAMIC(PHYSICAL) VS. STATISTICAL
dynamic models statistical models- MOS
9
CONCEPTUAL MODELS Dynamic Ascent: Shortwaves Aloft: 500mb
10
What is a conceptual model?
a mental model of how things in our surrounding environment work based on information received through scientific data and observations important diagnostic tool, widely used in meteorology
11
CONCEPTUAL MODELS: The Norwegian cyclone model
12
Forecasting Technique: Pattern Recognition
Associating a “weather pattern” to a “weather event” Significant weather events have patterns surface features upper level features 4-panel maps useful
13
Pattern Recognition: Severe Weather
Dynamics (winds) Shortwaves/vortmax “JET STREAM DISTURBANCE” Thermodynamics (stability) High theta-e air! WARM, HUMID AIR “MATCH” “FUEL”
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.