Download presentation
Presentation is loading. Please wait.
Published bySylvie Léonard Modified over 6 years ago
1
24/02/11 Tutorial 3 Inferential Statistics, Statistical Modelling & Survey Methods (BS2506) Pairach Piboonrungroj (Champ)
2
1. House price (Again) Analysis of Variance (ANOVA) Predictor
24/02/11 1. House price (Again) Predictor (Variable) Coefficient (B) SE (B) Constant -2.5 41.4 X1 1.62 0.21 X2 0.257 1.88 X4 -0.027 0.008 Analysis of Variance (ANOVA) Source of variation Sum of Squares Degree of Freedom Mean Squares Regression 277,895 Residual 34,727
3
1 (a) (i) Write out the estimated regression equation Predictor
24/02/11 1 (a) (i) Write out the estimated regression equation Predictor (Variable) Coefficient (B) SE (B) Constant -2.5 41.4 X1 1.62 0.21 X2 0.257 1.88 X4 -0.027 0.008
4
1 (a) Step1: Critical Value Step2: t-Statistic At 1%
24/02/11 1 (a) (ii) Test for the significance of regression equation At 1% Step1: Critical Value Step2: t-Statistic 4
5
24/02/11 1 (a) (ii) Test for the significance of regression equation Step1: Critical Value At 1% Step2: t-Statistic > Reject H0 Do NOT Reject H0 < < Reject H0 5
6
1. a). (iii) What are DF for SSR & SSE?
24/02/11 1. a). (iii) What are DF for SSR & SSE? Predictor (Variable) Coefficient (B) SE (B) Constant -2.5 41.4 X1 1.62 0.21 X2 0.257 1.88 X4 -0.027 0.008 Analysis of Variance (ANOVA) Source of variation Sum of Squares Degree of Freedom Mean Squares Regression 277,895 3 (p) Residual 34,727 11 (n-p-1) 6
7
Analysis of Variance (ANOVA)
24/02/11 1. a). (iv) Test for Significant relationship X&Y? H0: H1: At least one of the coefficients does not equal 0 Analysis of Variance (ANOVA) Source of variation Sum of Squares Degree of Freedom Mean Squares F Statistic Regression 277,895 3 92,631 29.341 Residual 34,727 11 3157 Critical Value At Then we can reject Null hypothesis, there is a relationship between Xs & Y 7
8
Analysis of Variance (ANOVA)
24/02/11 1. a). (v) Compute the coefficient of determination and explain its meaning R2 Analysis of Variance (ANOVA) Source of variation Sum of Squares Degree of Freedom Mean Squares F Statistic Regression 277,895 3 92,631 29.341 Residual 34,727 11 3157 TOTAL 312,622 R2 = 1 – (34,727/312,622) R2 = 1 – 0.111 R2 = = 88.9% 8
9
24/02/11 1(b) Model 1 Model 2 Model 3
10
24/02/11 1(b) (i) Compute Adjusted Coefficient of determination for three models 10
11
24/02/11 1(b) (ii) Interpret the coefficients on the house type, Beta5 and Beta6 (model 2) Prices for Detached houses increase by £63,794 Prices for Terrace Houses decreased by £65,371 (relative to Semi- detached) 11
12
24/02/11 1(b) (iii) At 0.05 level of significance, determine whether model 2 is superior to model1 Model 1 Model 2 Significant i.e., Model 2 is better than Model 1 12
13
24/02/11 1(b) (iv) At 0.05 level of significance, determine whether model 3 is superior to model 2 Model 2 Model 3 NOT Significant i.e., Model 3 is NOT better than Model 2 13
14
1(b) (v) From model2, estimate the price of 5 years old detached house with 250 square meters
15
2. Advertising expenditure
24/02/11 2. Advertising expenditure X, Advertising (£000) Y, Sales 5.5 90 2.0 40 3.2 55 6.0 95 3.8 70 4.4 80 5.0 6.5 7.0 88 85 92 91 R square 0.97 Adjusted R Square 0.96 Standard error of regression 3.37 Analysis of variance DF Sum Square Mean Square Regression 2,904 Residual 80.0 Variables in the Equation Variable B SE B Advert 31.79 4.48 Advert-square -2.30 0.485 (constant) -17.22 9.65 15
16
2.(a) State the regression equation for the curvilinear model.
Variables in the Equation Variable B SE B Advert 31.79 4.48 Advert-square -2.30 0.485 (constant) -17.22 9.65
17
2.(b) Predict the monthly sales (in pounds) for a month with total advertising expenditure of £6,000
18
2.(c) Determine there is significant relationship between the sales and advertising expenditure at the 0.01 level of significance H0: H1: At least one of the coefficients does not equal 0 Analysis of variance DF Sum Square Mean Square F Regression 2 2,904 1,452 127.05 Residual 7 80.0 11.428 Critical Value At Then we can reject Null hypothesis, there is a curvilinear relationship between sales and advertising expenditure
19
2 (d) Fit a linear model to the data and calculate SSE for this model
20
2 (d) Fit a linear model to the data and calculate SSE for this model
ID X Advertising Y Sales 1 5.5 90 2 40 3 3.2 55 4 6 95 5 3.8 70 4.4 80 7 88 8 85 9 6.5 92 10 91
21
2 (d) Fit a linear model to the data and calculate SSE for this model
ID X Advertising Y Sales xy x^2 y^2 1 5.5 90 495 30.25 8100 2 40 80 4 1600 3 3.2 55 176 10.24 3025 6 95 570 36 9025 5 3.8 70 266 14.44 4900 4.4 352 19.36 6400 7 88 528 7744 8 85 425 25 7225 9 6.5 92 598 42.25 8464 10 91 637 49 8281 Sum 49.4 786 4127 266.54 64764 Average 4.94 78.6 412.7 26.654 6476.4
22
2 (d) Fit a linear model to the data and calculate SSE for this model
23
2 (d) Fit a linear model to the data and calculate SSE for this model
ID X Advertising Y Sales xy x^2 y^2 1 5.5 90 495 30.25 8100 2 40 80 4 1600 3 3.2 55 176 10.24 3025 6 95 570 36 9025 5 3.8 70 266 14.44 4900 4.4 352 19.36 6400 7 88 528 7744 8 85 425 25 7225 9 6.5 92 598 42.25 8464 10 91 637 49 8281 Sum 49.4 786 4127 266.54 64764 Average 4.94 78.6 412.7 26.654 6476.4
24
2 (d) Fit a linear model to the data and calculate SSE for this model
ID X Advertising Y Sales xy x^2 y^2 predicted 1 5.5 90 495 30.25 8100 84.68 2 40 80 4 1600 46.70 3 3.2 55 176 10.24 3025 59.72 6 95 570 36 9025 90.10 5 3.8 70 266 14.44 4900 66.23 4.4 352 19.36 6400 72.74 7 88 528 7744 8 85 425 25 7225 79.25 9 6.5 92 598 42.25 8464 95.53 10 91 637 49 8281 100.95 Sum 49.4 786 4127 266.54 64764 Average 4.94 78.6 412.7 26.654 6476.4
25
2 (d) Fit a linear model to the data and calculate SSE for this model
ID X Advertising Y Sales xy x^2 y^2 predicted Square Error 1 5.5 90 495 30.25 8100 84.68 28.35 2 40 80 4 1600 46.70 44.92 3 3.2 55 176 10.24 3025 59.72 22.29 6 95 570 36 9025 90.10 24.00 5 3.8 70 266 14.44 4900 66.23 14.20 4.4 352 19.36 6400 72.74 52.69 7 88 528 7744 4.41 8 85 425 25 7225 79.25 33.05 9 6.5 92 598 42.25 8464 95.53 12.43 10 91 637 49 8281 100.95 99.01 Sum 49.4 786 4127 266.54 64764 Average 4.94 78.6 412.7 26.654 6476.4
26
2 (d) Fit a linear model to the data and calculate SSE for this model
ID X Advertising Y Sales xy x^2 y^2 predicted Square Error 1 5.5 90 495 30.25 8100 84.68 28.35 2 40 80 4 1600 46.70 44.92 3 3.2 55 176 10.24 3025 59.72 22.29 6 95 570 36 9025 90.10 24.00 5 3.8 70 266 14.44 4900 66.23 14.20 4.4 352 19.36 6400 72.74 52.69 7 88 528 7744 4.41 8 85 425 25 7225 79.25 33.05 9 6.5 92 598 42.25 8464 95.53 12.43 10 91 637 49 8281 100.95 99.01 Sum 49.4 786 4127 266.54 64764 335.36 Average 4.94 78.6 412.7 26.654 6476.4
27
24/02/11 2(e) At 0.01 level of significance, determine whether the curvilinear model is superior to the linear regression model Curvilinear Model Linear Regression Model Significant i.e., Curvilinear effect make significant contribution and should be included in the model. 27
28
2 (f) Draw a scatter diagram between the sales& Advertising expenditure.
29
2 (f) Sketch the Linear regression
30
2 (f) Sketch the Quadratic regression
Linear Regression
31
Thank you Download this Slides at www.pairach.com/teaching
Q & A
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.