Download presentation
Presentation is loading. Please wait.
Published byVerawati Gunawan Modified over 6 years ago
1
Ruang Vektor: Pendekatan formal Edi Cahyono Universitas Haluoleo
Jurusan Matematika FMIPA Universitas Haluoleo Kendari ..::.. Indonesia
2
Definisi V : himpunan tak kosong, dan terdapat operasi
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Definisi V : himpunan tak kosong, dan terdapat operasi penjumlahan dan perkalian dengan skalar. V dikatakan ruang vektor bila aksioma-aksioma berikut dipenuhi.
3
Aksioma-aksioma 1 2 3 4 5 Universitas Haluoleo
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Aksioma-aksioma 1 2 3 4 5
4
Aksioma-aksioma 6 7 8 9 10 Universitas Haluoleo
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Aksioma-aksioma 6 7 8 9 10
5
Contoh 1: Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Contoh 1:
6
Bukti: Aksioma 1 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 1
7
Bukti: Aksioma 2 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 2
8
Bukti: Aksioma 3 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 3
9
Bukti: Aksioma 4 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 4
10
Bukti: Aksioma 5 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 5
11
Bukti: Aksioma 6 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 6
12
Bukti: Aksioma 7 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 7
13
Bukti: Aksioma 8 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 8
14
Bukti: Aksioma 9 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 9
15
Bukti: Aksioma 10 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 10
16
Contoh 2: Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Contoh 2:
17
Bukti: Aksioma 1 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 1
18
Bukti: Aksioma 2 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 2
19
Bukti: Aksioma 3 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 3
20
Bukti: Aksioma 4 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 4
21
Bukti: Aksioma 5 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 5
22
Bukti: Aksioma 6 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 6
23
Bukti: Aksioma 7 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 7
24
Bukti: Aksioma 8 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 8
25
Bukti: Aksioma 9 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 9
26
Bukti: Aksioma 10 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 10
27
Contoh 3: Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Contoh 3:
28
Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema
29
Bukti a) Aksioma 4 Aksioma 5 Aksioma 3 Aksioma 8
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Bukti a) Aksioma 4 Aksioma 5 Aksioma 3 Aksioma 8 Sifat penjumlahan bil. Real Aksioma 5
30
Definisi V : ruang vektor dan
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Definisi V : ruang vektor dan W dikatakan sub ruang dari V bila W ruang vektor dengan operasi seperti pada V.
31
Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema
32
Definisi Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Definisi
33
Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema
34
Bukti a) 1) 2) 3) Ini membuktikan W subruang dari V.
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Bukti a) 1) 2) 3) Ini membuktikan W subruang dari V.
35
Bukti b) Ini membuktikan W himpunan bagian dari V.
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Bukti b) Ini membuktikan W himpunan bagian dari V.
36
Definisi Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Definisi
37
Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema
38
Definisi Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Definisi
39
Contoh Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Contoh
40
Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema
41
Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema
42
Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema
43
Creating Math for better living
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Creating Math for better living Thank you
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.