Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ruang Vektor: Pendekatan formal Edi Cahyono Universitas Haluoleo

Similar presentations


Presentation on theme: "Ruang Vektor: Pendekatan formal Edi Cahyono Universitas Haluoleo"— Presentation transcript:

1 Ruang Vektor: Pendekatan formal Edi Cahyono Universitas Haluoleo
Jurusan Matematika FMIPA Universitas Haluoleo Kendari ..::.. Indonesia

2 Definisi V : himpunan tak kosong, dan terdapat operasi
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Definisi V : himpunan tak kosong, dan terdapat operasi penjumlahan dan perkalian dengan skalar. V dikatakan ruang vektor bila aksioma-aksioma berikut dipenuhi.

3 Aksioma-aksioma 1 2 3 4 5 Universitas Haluoleo
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Aksioma-aksioma 1 2 3 4 5

4 Aksioma-aksioma 6 7 8 9 10 Universitas Haluoleo
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Aksioma-aksioma 6 7 8 9 10

5 Contoh 1: Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Contoh 1:

6 Bukti: Aksioma 1 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 1

7 Bukti: Aksioma 2 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 2

8 Bukti: Aksioma 3 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 3

9 Bukti: Aksioma 4 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 4

10 Bukti: Aksioma 5 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 5

11 Bukti: Aksioma 6 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 6

12 Bukti: Aksioma 7 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 7

13 Bukti: Aksioma 8 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 8

14 Bukti: Aksioma 9 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 9

15 Bukti: Aksioma 10 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 10

16 Contoh 2: Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Contoh 2:

17 Bukti: Aksioma 1 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 1

18 Bukti: Aksioma 2 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 2

19 Bukti: Aksioma 3 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 3

20 Bukti: Aksioma 4 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 4

21 Bukti: Aksioma 5 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 5

22 Bukti: Aksioma 6 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 6

23 Bukti: Aksioma 7 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 7

24 Bukti: Aksioma 8 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 8

25 Bukti: Aksioma 9 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 9

26 Bukti: Aksioma 10 Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Bukti: Aksioma 10

27 Contoh 3: Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Contoh 3:

28 Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema

29 Bukti a) Aksioma 4 Aksioma 5 Aksioma 3 Aksioma 8
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Bukti a) Aksioma 4 Aksioma 5 Aksioma 3 Aksioma 8 Sifat penjumlahan bil. Real Aksioma 5

30 Definisi V : ruang vektor dan
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Definisi V : ruang vektor dan W dikatakan sub ruang dari V bila W ruang vektor dengan operasi seperti pada V.

31 Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema

32 Definisi Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Definisi

33 Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema

34 Bukti a) 1) 2) 3) Ini membuktikan W subruang dari V.
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Bukti a) 1) 2) 3) Ini membuktikan W subruang dari V.

35 Bukti b) Ini membuktikan W himpunan bagian dari V.
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Bukti b) Ini membuktikan W himpunan bagian dari V.

36 Definisi Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Definisi

37 Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema

38 Definisi Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Definisi

39 Contoh Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Contoh

40 Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema

41 Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema

42 Teorema Universitas Haluoleo Department of Mathematics
Kendari ..::.. Indonesia Teorema

43 Creating Math for better living
Department of Mathematics Universitas Haluoleo Kendari ..::.. Indonesia Creating Math for better living Thank you


Download ppt "Ruang Vektor: Pendekatan formal Edi Cahyono Universitas Haluoleo"

Similar presentations


Ads by Google