Presentation is loading. Please wait.

Presentation is loading. Please wait.

p+p p+p p-n p-n p-p p-p Consider the scattering reactions:

Similar presentations


Presentation on theme: "p+p p+p p-n p-n p-p p-p Consider the scattering reactions:"— Presentation transcript:

1 p+p p+p p-n p-n p-p p-p Consider the scattering reactions:
The strong force does not discriminate between nucleon or pion charge. What can we expect for the cross section of these three reactions?

2 But p+p p+p p-n p-n p- + p  p- + p <p-p|L|p-p> = M + M
If we enforce conservation of isospin we can only connect initial and final states of the same total I, I3 p+p p+p p-n p-n | 3/2, 3/2 > | 3/2, -3/2 > | I,I3 > 1 ½ ½ -1 -½ ½ But p- + p  p- + p ½ ½ means combining: | > | 1/2, 1/2 > = |3/2, -1/2 > |1/2, -1/2 > ) this interaction involves two matrix elements <p-p|L|p-p> = M M

3 p+ + p p+ + p a. b. p- + p p- + p c. p- + p p0 + n
1,1 ½ ,½ elastic scattering p- + p p- + p 1,-1 ½ ,½ but only one of the above can also participate in a p- + p p0 + n ? charge exchange process ? 1,-1 ½ ,½ 1, 0 ½ ,-½ This IS observed! So all strong interactions not SIMPLY charge independent. I3 ISOSPIN independence is more general.

4 p+ + p p+ + p a. b. c. p- + p p- + p p- + p p0 + n p+ p p- p p0 n
1,1 ½ ,½ elastic scattering p- + p p- + p 1,-1 ½ ,½ p- + p p0 + n charge exchange process 1,-1 ½ ,½ 1, 0 ½ ,-½ These three interactions involve the ISOSPIN spaces: p+ p p- p 1 3 2 3 - p0 n 2 3 1 3 + 2 2 Recall: = Mfi M3/2 Let’s denote: same by I3-indep.

5 a. b. c. p+ + p p+ + p p- + p p- + p p- + p p0 + n p+ p p- p p0 n
elastic scattering p- + p p- + p p- + p p0 + n charge exchange process p+ p p- p 1 3 2 3 - M3/2 p0 n 2 3 1 3 + a. b. c. a  M3/2 2 b | M3/2 + M1/2| 2 1 3 2 3 c | M3/ M1/2| 2 2 3 2 3

6 a : b : c = : : p+ + p p+ + p a. a  M3/2 b. c.
b | M3/2 + M1/2| 2 p- + p p- + p 1 3 2 3 p- + p p0 + n c | M3/ M1/2| 2 2 3 2 3 a : b : c = : : 2 M3/2 1 9 |M3/2 +2M1/2|2 2 9 |M3/2 - M1/2|2 for the combined cross section of both processes Now if M3/2=M1/2 then +p = -p total but also -p0n=

7  Measured the depletion of pion beam
2H target S1 S2 S3 S4 Measured the depletion of pion beam repeated with the tank full, empty repeated with + and  - beam for KE  195 MeV (the resonance of the 3/2-spin ) 200 300 Total Cross Section sT (10-27 cm2) p- + p p+ + p gp po p p0p 180 250 160 200 140 120 150 100 100 80 50 60 40 Photon Beam Energy (MeV) 20 Lab Energy of Pion Beam (MeV)

8 a : b : c = : : a : b + c = : a : b : c = 9 : 1 : 2 M3/2
|M3/2 +2M1/2|2 2 9 |M3/2 - M1/2|2 a : b + c = : 2 M3/2 a : b : c = 9 : 1 : 2

9  (U) (U) U† U U†H U= H [H ,U]= 0 [H ,U]= 0 [H ,G]= 0
Symmetry implies any transformation  still satisfies the same Schrödinger equation, same Hamiltonian: (U) (U) U† U U†H U= H means we must demand: [H ,U]= 0 Which means that the operator U must be associated with a CONSERVED quantity! Though U are UNITARY, not necessarily HERMITIAN, but remember: where the G is Hermitian! since you’ve already shown [H ,U]= 0 [H ,G]= 0 The GENERATOR of any SYMMETRY OPERATION is an OPERATOR of a CONSERVED OBSERVABLE (quantum number!)

10 Mesons Baryons isospin mass charge pion 139.569 + +1 134.964 0 0
Particle I MeV/c states Q pion  +1 -1 eta  rho  +1 -1 omega  Baryons Spin-1/2 nucleon p n +1/2 -1/2 Spin-3/2 delta  +3/2 +1/2 -1/2 -3/2

11 “hypercharge” or BARYON NUMBER
Q = I3 + ½Y “hypercharge” or BARYON NUMBER because =1 for baryons 0 for mesons

12 cloud chamber cosmic ray event
1947 Rochester and Butler cloud chamber cosmic ray event of a neutral object decaying into two pions K0  + +

13 cloud chamber cosmic ray event
Rochester and Butler cloud chamber cosmic ray event of a neutral object decaying into two pions K0  + + m = MeV C. F. Powell photographic emulsion event K+  + + m = MeV

14   p +  -  - p 1950 Carl Anderson (Cal Tech) m=1115.6 MeV
mp= MeV

15 1952 Brookhaven Cosmotron 1st modern accelerator
artificially creating these particles for study GeV p synchrotron Lawrence,Berkeley GeV p synchrotron CERN, Geneva 33-GeV p synchrotron Brookhaven Lab GeV e synchrotron Cambridge GeV p synchrotron Argonne Lab GeV p synchrotron DESY,Germany GeV e Linac SLAC (Standford)

16 isospin mass charge Spin-0 Pseudoscalar Mesons
Particle I MeV/c states Q pion  +1 -1 kaon K K +1/2 -1/2 kaon K K +1/2 -1/2 eta  rho  +1 -1 omega  Spin-1/2 Baryons nucleon p n +1/2 -1/2 lambda  Sigma  +1 -1 Cascade  +1/2 -1/2

17 Spin-3/2 Baryons isospin mass charge Delta 1232. ++ +2 + +1 0 0
Particle I MeV/c states Q Delta  +3/2 +1/2 -1/2 -3/2 Sigma-star    +1 -1 Cascade-star * * +1/2 -1/2


Download ppt "p+p p+p p-n p-n p-p p-p Consider the scattering reactions:"

Similar presentations


Ads by Google