Download presentation
Presentation is loading. Please wait.
1
Introduction to particle physics Part IV
Physics 129, Fall 2010; Prof. D. Budker Introduction to particle physics Part IV
2
Bubble chamber Great topics for oral presenantion!
The Gargamelle at CERN: discovered weak neutral currents in 1973 Professor Donald A. Glaser Great topics for oral presenantion! Physics 129, Fall 2010, Prof. D. Budker;
3
How particles decay Decay probability goes as dt :
Particles do not age! Board work: Mean Lifetime = 1/ Branching Ratios Partial decay rates add Physics 129, Fall 2010, Prof. D. Budker;
4
Cross Sections Effective area Inclusive vs. exclusive
Elastic vs. inelastic (different reactions are called channels) Resonances Physics 129, Fall 2010, Prof. D. Budker;
5
Cross Sections Effective area Differential cross section
Physics 129, Fall 2010, Prof. D. Budker;
6
Cross Sections Physics 129, Fall 2010, Prof. D. Budker;
7
Cross Sections Some cross-sections diverge (e.g., for Rutherford scattering) Effective cut-off Physics 129, Fall 2010, Prof. D. Budker;
8
Cross Sections Physics 129, Fall 2010, Prof. D. Budker;
9
Mandelstam Variables Universally used!
Physics 129, Fall 2010, Prof. D. Budker;
10
Units of cross section Origin: Uranium nucleus cm as "big as a barn" Unit Symbol m2 cm2 megabarn Mb 10−22 10−18 barn b 10−28 10−24 millibarn mb 10−31 10−27 microbarn (or "outhouse"[3]) μb 10−34 10−30 nanobarn nb 10−37 10−33 picobarn pb 10−40 10−36 femtobarn fb 10−43 10−39 attobarn ab 10−46 10−42 shed[4][5] (10−24 barn) [none] 10−52 10−48 Physics 129, Fall 2010, Prof. D. Budker;
11
Cross Sections Luminosity:
number of particles in a beam per unit area per unit time Physics 129, Fall 2010, Prof. D. Budker;
12
Luminosity What about colliding beams?
Luminosity = collision frequency n1 n2 / beam area Physics 129, Fall 2010, Prof. D. Budker;
13
Luminosity Physics 129, Fall 2010, Prof. D. Budker;
14
LHC luminosity: reality check
Physics 129, Fall 2010, Prof. D. Budker;
15
The Fermi Golden Rule mi – mass of ith particle
pi – 4-momentum of ith particle S – statistical factor accounting for identical particles M – amplitude (p1, …. , pn) Physics 129, Fall 2010, Prof. D. Budker;
16
The Fermi Golden Rule Kinematic constraints:
All outgoing particles are on the mass shell All outgoing particles have positive energy Energy & momentum conservation Physics 129, Fall 2010, Prof. D. Budker;
17
The Fermi Golden Rule 2π rules: Every δ gets a 2π
Every d gets a 1/(2π) Physics 129, Fall 2010, Prof. D. Budker;
18
The Fermi Golden Rule With the kinematic constraints, the G.R. simplifies to: For two-body decay: Physics 129, Fall 2010, Prof. D. Budker;
19
The Feynman-Diagram Rules
Goal: figure out amplitude M Draw all possible diagrams for the process The amplitudes from different diagrams add Physics 129, Fall 2010, Prof. D. Budker;
20
The Feynman-Diagram Rules
For each diagram: Label external momenta pi , label internal momenta qi, draw arrows (arbitrary for internal lines) For each vertex, write coupling constant Each internal line propagator: For each vertex: energy/momentum conservation: (minus for outgoing lines) Add for each internal line; integrate Erase the resulting ; multiply by The result is M ; examples in Ch. 6 of Griffiths Physics 129, Fall 2010, Prof. D. Budker;
21
Higher-order diagrams
Problem: loop integrals (logarithmically) diverge at large q This is not because the diagrams are bad! Regularization: introduce a heavy particle cut-off (p. 219) Renormalization; running coupling constants…. Physics 129, Fall 2010, Prof. D. Budker;
22
Example/interlude: Diagrams in
Physics 129, Fall 2010, Prof. D. Budker;
23
Example/interlude: Diagrams in
Vanishes for Vanishes in the high-frequency limit Physics 129, Fall 2010, Prof. D. Budker;
24
Relativistic Equations
Nonrelativistic Relativistic; spin zero Physics 129, Fall 2010, Prof. D. Budker;
25
The Dirac Equation (relativistic, spin ½)
Introduce 44 Dirac Matrices: Relativistic; spin 1/2 Physics 129, Fall 2010, Prof. D. Budker;
26
Solving the Dirac Equation
Assume wavefunction independent of position: Physics 129, Fall 2010, Prof. D. Budker;
27
Solving the Dirac Equation
Four independent solutions: The Dirac Sea Plane wave solutions (Sec. 7.2) Electron Electron Positron Positron Physics 129, Fall 2010, Prof. D. Budker;
28
Dirac Spinor Algebra Some useful facts about spinors:
How do Dirac spinors transform under P? Physics 129, Fall 2010, Prof. D. Budker;
29
Dirac Spinor Algebra Introduce another matrix: What about 4 ?
Physics 129, Fall 2010, Prof. D. Budker;
30
Bilinear Covariants Physics 129, Fall 2010, Prof. D. Budker;
31
Physics 129, Fall 2010, Prof. D. Budker; http://budker. berkeley
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.