Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to particle physics Part IV

Similar presentations


Presentation on theme: "Introduction to particle physics Part IV"— Presentation transcript:

1 Introduction to particle physics Part IV
Physics 129, Fall 2010; Prof. D. Budker Introduction to particle physics Part IV

2 Bubble chamber Great topics for oral presenantion!
The Gargamelle at CERN: discovered weak neutral currents in 1973 Professor Donald A. Glaser Great topics for oral presenantion! Physics 129, Fall 2010, Prof. D. Budker;

3 How particles decay Decay probability goes as dt :
Particles do not age! Board work: Mean Lifetime = 1/ Branching Ratios Partial decay rates add Physics 129, Fall 2010, Prof. D. Budker;

4 Cross Sections Effective area Inclusive vs. exclusive
Elastic vs. inelastic (different reactions are called channels) Resonances Physics 129, Fall 2010, Prof. D. Budker;

5 Cross Sections Effective area Differential cross section
Physics 129, Fall 2010, Prof. D. Budker;

6 Cross Sections Physics 129, Fall 2010, Prof. D. Budker;

7 Cross Sections Some cross-sections diverge (e.g., for Rutherford scattering) Effective cut-off Physics 129, Fall 2010, Prof. D. Budker;

8 Cross Sections Physics 129, Fall 2010, Prof. D. Budker;

9 Mandelstam Variables Universally used!
Physics 129, Fall 2010, Prof. D. Budker;

10 Units of cross section Origin: Uranium nucleus cm as "big as a barn" Unit Symbol m2 cm2 megabarn Mb 10−22 10−18 barn b 10−28 10−24 millibarn mb 10−31 10−27 microbarn (or "outhouse"[3]) μb 10−34 10−30 nanobarn nb 10−37 10−33 picobarn pb 10−40 10−36 femtobarn fb 10−43 10−39 attobarn ab 10−46 10−42 shed[4][5] (10−24 barn) [none] 10−52 10−48 Physics 129, Fall 2010, Prof. D. Budker;

11 Cross Sections Luminosity:
number of particles in a beam per unit area per unit time Physics 129, Fall 2010, Prof. D. Budker;

12 Luminosity What about colliding beams?
Luminosity = collision frequency  n1  n2 / beam area Physics 129, Fall 2010, Prof. D. Budker;

13 Luminosity Physics 129, Fall 2010, Prof. D. Budker;

14 LHC luminosity: reality check
Physics 129, Fall 2010, Prof. D. Budker;

15 The Fermi Golden Rule mi – mass of ith particle
pi – 4-momentum of ith particle S – statistical factor accounting for identical particles M – amplitude (p1, …. , pn) Physics 129, Fall 2010, Prof. D. Budker;

16 The Fermi Golden Rule Kinematic constraints:
All outgoing particles are on the mass shell All outgoing particles have positive energy Energy & momentum conservation Physics 129, Fall 2010, Prof. D. Budker;

17 The Fermi Golden Rule 2π rules: Every δ gets a 2π
Every d gets a 1/(2π) Physics 129, Fall 2010, Prof. D. Budker;

18 The Fermi Golden Rule With the kinematic constraints, the G.R. simplifies to: For two-body decay: Physics 129, Fall 2010, Prof. D. Budker;

19 The Feynman-Diagram Rules
Goal: figure out amplitude M Draw all possible diagrams for the process The amplitudes from different diagrams add Physics 129, Fall 2010, Prof. D. Budker;

20 The Feynman-Diagram Rules
For each diagram: Label external momenta pi , label internal momenta qi, draw arrows (arbitrary for internal lines) For each vertex, write coupling constant Each internal line  propagator: For each vertex: energy/momentum conservation: (minus for outgoing lines) Add for each internal line; integrate Erase the resulting ; multiply by The result is M ; examples in Ch. 6 of Griffiths Physics 129, Fall 2010, Prof. D. Budker;

21 Higher-order diagrams
Problem: loop integrals (logarithmically) diverge at large q This is not because the diagrams are bad! Regularization: introduce a heavy particle  cut-off (p. 219) Renormalization; running coupling constants…. Physics 129, Fall 2010, Prof. D. Budker;

22 Example/interlude: Diagrams in
Physics 129, Fall 2010, Prof. D. Budker;

23 Example/interlude: Diagrams in
Vanishes for Vanishes in the high-frequency limit Physics 129, Fall 2010, Prof. D. Budker;

24 Relativistic Equations
Nonrelativistic Relativistic; spin zero Physics 129, Fall 2010, Prof. D. Budker;

25 The Dirac Equation (relativistic, spin ½)
Introduce 44 Dirac Matrices: Relativistic; spin 1/2 Physics 129, Fall 2010, Prof. D. Budker;

26 Solving the Dirac Equation
Assume wavefunction independent of position: Physics 129, Fall 2010, Prof. D. Budker;

27 Solving the Dirac Equation
Four independent solutions: The Dirac Sea Plane wave solutions (Sec. 7.2) Electron  Electron  Positron  Positron  Physics 129, Fall 2010, Prof. D. Budker;

28 Dirac Spinor Algebra Some useful facts about spinors:
How do Dirac spinors transform under P? Physics 129, Fall 2010, Prof. D. Budker;

29 Dirac Spinor Algebra Introduce another matrix: What about 4 ?
Physics 129, Fall 2010, Prof. D. Budker;

30 Bilinear Covariants Physics 129, Fall 2010, Prof. D. Budker;

31 Physics 129, Fall 2010, Prof. D. Budker; http://budker. berkeley


Download ppt "Introduction to particle physics Part IV"

Similar presentations


Ads by Google