Download presentation
Presentation is loading. Please wait.
1
Program Analysis and Verification 0368-4479
Noam Rinetzky Lecture 10: Shape Analysis Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav
2
Shape Analysis Automatically verify properties of programs manipulating dynamically allocated storage Identify all possible shapes (layout) of the heap
3
Analyzing Singly Linked Lists
4
Limitations of pointer analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } // Singly-linked list // data type. class SLL { int data; public SLL n; // next cell SLL(Object data) { this.data = data; this.n = null; } }
5
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; }
6
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t
7
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t n L1
8
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t n L1 tmp
9
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t n L1 n tmp L2
10
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t n L1 n tmp L2
11
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t n L1 n tmp L2
12
Flow&Field-sensitive Analysis
h // Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } null t n L1 n tmp != null tmp L2 h null t n L1 tmp == null tmp
13
Flow&Field-sensitive Analysis
h // Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } null t n L1 n tmp L2 h null t n L1 tmp
14
Flow&Field-sensitive Analysis
h // Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } null t n L1 n tmp L2 tmp == null ?
15
Flow&Field-sensitive Analysis
h // Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } null t n L1 n tmp L2
16
Flow&Field-sensitive Analysis
h // Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } null t n L1 n tmp L2 Possible null dereference!
17
Flow&Field-sensitive Analysis
h // Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } null t n L1 n tmp L2 Fixed-point for first loop
18
Flow&Field-sensitive Analysis
h // Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } null t n L1 n tmp L2
19
Flow&Field-sensitive Analysis
h // Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } null t n L1 n tmp L2
20
Flow&Field-sensitive Analysis
h // Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } null t n L1 n tmp L2 Possible null dereference!
21
What was the problem? Pointer analysis abstract all objects allocated at same program location into one summary object. However, objects allocated at same memory location may behave very differently E.g., object is first/last one in the list Assign extra predicates to distinguish between objects with different roles Number of objects represented by summary object 1 – does not allow strong updates Distinguish between concrete objects (#=1) and abstract objects (#1) Join operator very coarse – abstracts away important distinctions (tmp=null/tmp!=null) Apply disjunctive completion
22
Improved solution Pointer analysis abstract all objects allocated at same program location into one summary object. However, objects allocated at same memory location may behave very differently E.g., object is first/last one in the list Add extra instrumentation predicates to distinguish between objects with different roles Number of objects represented by summary object 1 – does not allow strong updates Distinguish between concrete objects (#=1) and abstract objects (#1) Join operator very coarse – abstracts away important distinctions (tmp=null/tmp!=null) Apply disjunctive completion
23
Adding properties to objects
Let’s first drop allocation site information and instead… Define a unary predicate x(v) for each pointer variable x meaning x points to x Predicate holds for at most one node Merge together nodes with same sets of predicates
24
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t
25
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t n {h, t}
26
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t n {h, t} tmp
27
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t n {h, t} tmp n {tmp} No null dereference
28
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t n {h, t} tmp n {tmp}
29
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null t n {t} tmp n {h, tmp}
30
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp {h, tmp} h null t n {h, t} tmp
31
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp {h, tmp} h null t n {h, t} tmp Do we need to analyze this shape graph again?
32
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp {h, tmp} h null t n {h, t} tmp
33
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { h} n { tmp} No null dereference
34
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { h} n { tmp}
35
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n { h, tmp}
36
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n { h, tmp}
37
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n { h} n { tmp} No null dereference
38
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n { h} n { tmp}
39
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n { } n {h, tmp}
40
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n n {h, tmp} How many objects does it represent? Summarization
41
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n n {h} n { tmp} No null dereference
42
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n n {h} n { tmp}
43
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n n {h, tmp} Fixed-point for first loop
44
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n n {h, tmp}
45
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { } n n {h, tmp}
46
Flow&Field-sensitive Analysis
// Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n tmp { tmp?} n n { tmp}
47
Best (induced) transformer
f#(a)= (f((a))) C A 4 f f# 3 1 2 Problem: incomputable directly
48
Best transformer for tmp=tmp.n
null h t {t} tmp n { } {h, tmp} null h n {t} t n { } tmp n n {h, tmp} null h t {t} tmp n { } {h, tmp}
49
Best transformer for tmp=tmp.n:
null h t {t} tmp n { } {h, tmp} null h n {t} t n { } tmp n n {h, tmp} null h t {t} tmp n { } {h, tmp} h null n t {t} n { } { } … { } n tmp {h, tmp}
50
Best transformer for tmp=tmp.n
h null null n h t {t} n {t} n t {tmp } n n { } tmp {h} tmp n n {h, tmp} h h null null n n t {t} t {t} n { } n { } { } { } … tmp {tmp } {tmp } tmp n n {h} {h}
51
Best transformer for tmp=tmp.n:
h null null n h t {t} n {t} n t {tmp } n n { } tmp {h} tmp n n {h, tmp} h h null null n n t {t} t {t} n n { } { } … tmp {tmp } {tmp } tmp n n {h} {h}
52
Handling updates on summary nodes
Transformers accessing only concrete nodes are easy Transformers accessing summary nodes are complicated Can’t concretize summary nodes – represents potentially unbounded number of concrete nodes We need to split into cases by “materializing” concrete nodes from summary node Introduce a new temporary predicate tmp.n Partial concretization
53
Transformer for tmp=tmp.n: ’
null h n {t} ’ t n { } tmp n n {h, tmp} Case 1: Exactly 1 object. Case 2: >1 objects.
54
Transformer for tmp=tmp.n: ’
null h t {t} tmp n {tmp.n } {h, tmp} null h n {t} ’ t n { } tmp n n {h, tmp} Summary node h null n t {t} spaghetti n { } tmp.n is a concrete node {tmp.n } n tmp {h, tmp}
55
Transformer tmp=tmp.n
null h t {t} tmp n {tmp, tmp.n } {h} null h n {t} t n { } tmp n n {h, tmp} h null n t {t} n { } tmp {tmp, tmp.n } n {h}
56
Transformer for tmp=tmp.n:
null h t {t} tmp n {tmp} {h} // Build a list SLL h=null, t = null; L1: h=t= new SLL(-1); SLL tmp = null; while (…) { int data = getData(…); L2: tmp = new SLL(data); tmp.n = h; h = tmp; } // Process elements tmp = h; while (tmp != t) { assert tmp != null; tmp.data += 1; tmp = tmp.n; } h null n t {t} n { } tmp {tmp} n {h}
57
Transformer via partial-concretization
f#(a)= ’(f#’(’(a))) C A’ A ’ 6 4 f f#’ f# 3 5 1 2 ’
58
Recap Adding more properties to nodes refines abstraction
Can add temporary properties for partial concretization Materialize concrete nodes from summary nodes Allows turning weak updates into strong ones Focus operation in shape-analysis lingo Not trivial in general and requires more semantic reduction to clean up impossible edges General algorithms available via 3-valued logic and implemented in TVLA system
59
3-Value logic based shape analysis
60
Sequential Stack Want to Verify No Null Dereference
void push (int v) { Node x = malloc(sizeof(Node)); x->d = v; x->n = Top; Top = x; } int pop() { if (Top == NULL) return EMPTY; Node *s = Top->n; int r = Top->d; Top = s; return r; } Want to Verify No Null Dereference Underlying list remains acyclic after each operation
61
Shape Analysis via 3-valued Logic
1) Abstraction 3-valued logical structure canonical abstraction 2) Transformers via logical formulae soundness by construction embedding theorem, [SRW02]
62
Concrete State represent a concrete state as a two-valued logical structure Individuals = heap allocated objects Unary predicates = object properties Binary predicates = relations parametric vocabulary n n Top u1 u2 u3 (storeless, no heap addresses)
63
Concrete State S = <U, > over a vocabulary P U – universe
- interpretation, mapping each predicate from p to its truth value in S Top n u1 u2 u3 U = { u1, u2, u3} P = { Top, n } (n)(u1,u2) = 1, (n)(u1,u3)=0, (n)(u2,u1)=0,… (Top)(u1)=1, (Top)(u2)=0, (Top)(u3)=0
64
Formulae for Observing Properties
void push (int v) { Node x = malloc(sizeof(Node)); xd = v; xn = Top; Top = x; } Top u1 u2 u3 Top != null w: x(w) w:Top(w) 1 w: x(w) No node precedes Top v1,v2: n(v1, v2) Top(v2) 1 No Cycles 1 v1,v2: n(v1, v2) n*(v2, v1) v1,v2: n(v1, v2) n*(v2, v1) v1,v2: n(v1, v2) Top(v2)
65
Concrete Interpretation Rules
Statement Update formula x =NULL x’(v)= 0 x= malloc() x’(v) = IsNew(v) x=y x’(v)= y(v) x=y next x’(v)= w: y(w) n(w, v) x next=y n’(v, w) = (x(v) n(v, w)) (x(v) y(w))
66
Example: s = Topn Top Top s u1 u2 u3 u1 u2 u3
s’(v) = v1: Top(v1) n(v1,v) u1 u2 u3 Top u1 1 u2 u3 n u1 u2 U3 1 u3 Top u1 1 u2 u3 n u1 u2 U3 1 u3 s u1 u2 u3 s u1 u2 1 u3
67
Collecting Semantics { st(w)(S) | S CSS[w] }
if v = entry { <,> } { st(w)(S) | S CSS[w] } (w,v) E(G), w Assignments(G) { S | S CSS[w] } (w,v) E(G), w Skip(G) CSS [v] = { S | S CSS[w] and S cond(w)} othrewise (w,v) True-Branches(G) { S | S CSS[w] and S cond(w)} (w,v) False-Branches(G)
68
Collecting Semantics At every program point – a potentially infinite set of two-valued logical structures Representing (at least) all possible heaps that can arise at the program point Next step: find a bounded abstract representation
69
3-Valued Logic 1 = true 0 = false 1/2 = unknown
A join semi-lattice, 0 1 = 1/2 1/2 information order 1 logical order
70
3-Valued Logical Structures
A set of individuals (nodes) U Relation meaning Interpretation of relation symbols in P p0() {0,1, 1/2} p1(v) {0,1, 1/2} p2(u,v) {0,1, 1/2} A join semi-lattice: 0 1 = 1/2
71
Boolean Connectives [Kleene]
72
Property Space 3-struct[P] = the set of 3-valued logical structures over a vocabulary (set of predicates) P Abstract domain (3-Struct[P]) is
73
Embedding Order Given two structures S = <U, >, S’ = <U’, ’> and an onto function f : U U’ mapping individuals in U to individuals in U’ We say that f embeds S in S’ (denoted by S S’) if for every predicate symbol p P of arity k: u1, …, uk U, (p)(u1, ..., uk) ’(p)(f(u1), ..., f (uk)) and for all u’ U’ ( | { u | f (u) = u’ } | > 1) ’(sm)(u’) We say that S can be embedded in S’ (denoted by S S’) if there exists a function f such that S f S’
74
Tight Embedding S’ = <U’, ’> is a tight embedding of S=< U, > with respect to a function f if: S’ does not lose unnecessary information ’(u’1,…, u’k) = {(u1 ..., uk) | f(u1)=u’1,..., f(uk)=u’k} One way to get tight embedding is canonical abstraction
75
Canonical Abstraction
Top u1 u1 u2 u2 u3 u3 [Sagiv, Reps, Wilhelm, TOPLAS02]
76
Canonical Abstraction
Top u1 u1 u2 u2 u3 u3 Top [Sagiv, Reps, Wilhelm, TOPLAS02]
77
Canonical Abstraction
Top u1 u1 u2 u2 u3 u3 Top
78
Canonical Abstraction
Top u1 u1 u2 u2 u3 u3 Top
79
Canonical Abstraction
Top u1 u1 u2 u2 u3 u3 Top
80
Canonical Abstraction
Top u1 u1 u2 u2 u3 u3 Top
81
Canonical Abstraction ()
Merge all nodes with the same unary predicate values into a single summary node Join predicate values ’(u’1 ,..., u’k) = { (u1 ,..., uk) | f(u1)=u’1 ,..., f(uk)=u’k } Converts a state of arbitrary size into a 3-valued abstract state of bounded size (C) = { (c) | c C }
82
Information Loss Top n Canonical abstraction Top Top n Top Top Top n
83
Instrumentation Predicates
Record additional derived information via predicates rx(v) = v1: x(v1) n*(v1,v) c(v) = v1: n(v1, v) n*(v, v1) Canonical abstraction Top n Top c Top n c Top
84
Embedding Theorem: Conservatively Observing Properties
Top rTop rTop No Cycles No cycles (derived) 1/2 1 v1,v2: n(v1, v2) n*(v2, v1) v:c(v)
85
Operational Semantics
void push (int v) { Node x = malloc(sizeof(Node)); x->d = v; x->n = Top; Top = x; } Top n u1 u2 u3 int pop() { if (Top == NULL) return EMPTY; Node *s = Top->n; int r = Top->d; Top = s; return r; } s’(v) = v1: Top(v1) n(v1,v) s = Top->n Top n u1 u2 u3 s
86
? Abstract Semantics s = Topn s’(v) = v1: Top(v1) n(v1,v) Top Top
rTop s Top rTop rTop s’(v) = v1: Top(v1) n(v1,v) s = Top->n
87
Best Transformer (s = Topn)
rTop Top rTop Concrete Semantics Top s rTop Top rTop s’(v) = v1: Top(v1) n(v1,v) . . Canonical Abstraction ? Top s rTop Abstract Semantics Top s rTop Top rTop rTop
88
Semantic Reduction Improve the precision of the analysis by recovering properties of the program semantics A Galois connection (C, , , A) An operation op:AA is a semantic reduction when lL2 op(l)l and (op(l)) = (l) l op C A
89
The Focus Operation Focus: Formula((3-Struct) (3-Struct))
Generalizes materialization For every formula Focus()(X) yields structure in which evaluates to a definite values in all assignments Only maximal in terms of embedding Focus() is a semantic reduction But Focus()(X) may be undefined for some X
90
Partial Concretization Based on Transformer (s=Topn)
rTop Top rTop Abstract Semantics Top rTop Top s rTop s’(v) = v1: Top(v1) n(v1,v) Canonical Abstraction Focus (Topn) Partial Concretization u: top(u) n(u, v) Top s rTop Abstract Semantics Top rTop Top rTop s
91
Partial Concretization
Locally refine the abstract domain per statement Soundness is immediate Employed in other shape analysis algorithms [Distefano et.al., TACAS’06, Evan et.al., SAS’07, POPL’08]
92
The Coercion Principle
Another Semantic Reduction Can be applied after Focus or after Update or both Increase precision by exploiting some structural properties possessed by all stores (Global invariants) Structural properties captured by constraints Apply a constraint solver
93
Apply Constraint Solver
Top rTop Top rTop x Top rTop x x rx rx,ry n y x rx rx,ry n y
94
Sources of Constraints
Properties of the operational semantics Domain specific knowledge Instrumentation predicates User supplied
95
Example Constraints x(v1) x(v2)eq(v1, v2)
n(v, v1) n(v,v2)eq(v1, v2) n(v1, v) n(v2,v)eq(v1, v2)is(v) n*(v1, v2)t[n](v1, v2)
96
Abstract Transformers: Summary
Kleene evaluation yields sound solution Focus is a statement-specific partial concretization Coerce applies global constraints
97
Abstract Semantics { t_embed(coerce(st(w)3(focusF(w)(SS[w] ))))
if v = entry { <,> } { t_embed(coerce(st(w)3(focusF(w)(SS[w] )))) (w,v) E(G), w Assignments(G) { S | S SS[w] } othrewise (w,v) E(G), w Skip(G) SS [v] = { t_embed(S) | S coerce(st(w)3(focusF(w)(SS[w] ))) and S 3 cond(w)} (w,v) True-Branches(G) { t_embed(S) | S coerce(st(w)3(focusF(w)(SS[w] ))) and S 3 cond(w)} (w,v) False-Branches(G)
98
Recap Abstraction Transformers canonical abstraction
recording derived information Transformers partial concretization (focus) constraint solver (coerce) sound information extraction
99
Stack Push … v: x(v) v: x(v) v:c(v) v1,v2: n(v1, v2) Top(v2)
emp … Top void push (int v) { Node x = alloc(sizeof(Node)); xd = v; xn = Top; Top = x; } x x Top v: x(v) v: x(v) x x Top x Top x Top v1,v2: n(v1, v2) Top(v2) Top v:c(v) Top
100
What about procedures?
101
A Semantics for Procedure Local Heaps and its Abstractions
Noam Rinetzky Tel Aviv University Jörg Bauer Universität des Saarlandes Thomas Reps University of Wisconsin Mooly Sagiv Tel Aviv University Reinhard Wilhelm Universität des Saarlandes
102
Motivation Interprocedural shape analysis Challenge
Conservative static pointer analysis Heap intensive programs Imperative programs with procedures Recursive data structures Challenge Destructive update Localized effect of procedures
103
Main idea Local heaps x x x y t g x call p(x); y g t
104
Main idea Local heaps Cutpoints x x x y t g x call p(x); y g t
105
Main Results Concrete operational semantics Abstractions Large step
Functional analysis Storeless Shape abstractions Local heap Observationally equivalent to “standard” semantics Java and “clean” C Abstractions Shape analysis [Sagiv, Reps, Wilhelm, TOPLAS ‘02] May-alias [Deutsch, PLDI ‘94] …
106
Outline Motivating example Why semantics
Local heaps Cutpoints Why semantics Local heap storeless semantics Shape abstraction
107
Example … static void main() { } static List reverse(List t) { } n t n
q n q List x = reverse(p); n p x t r n t r n List y = reverse(q); List z = reverse(x); return r;
108
Example static void main() { } static List reverse(List t) { }
List x = reverse(p); n t n p x n p x n t n n q List y = reverse(q); n t r n t r n q y List z = reverse(x); return r;
109
Example n t n static void main() { } static List reverse(List t) { }
List x = reverse(p); n t List y = reverse(q); n p x n p x n t q y n q y n List z = reverse(x); p n x z t r n t r n return r;
110
Cutpoints Separating objects Not pointed-to by a parameter
111
Cutpoints proc(x) Separating objects Not pointed-to by a parameter
Stack sharing
112
Cutpoints proc(x) proc(x) Separating objects
Not pointed-to by a parameter proc(x) proc(x) n n n n n n n n n n x p x n n y Stack sharing Heap sharing
113
Cutpoints proc(x) proc(x) Separating objects
Not pointed-to by a parameter Capture external sharing patterns proc(x) proc(x) n n n n n n n n n n x p x n n y Stack sharing Heap sharing
114
Example static void main() { } static List reverse(List t) { }
List x = reverse(p); List y = reverse(q); n p x n t n n n p x q y n q y n List z = reverse(x); p n z x r t n r t n return r;
115
Outline Motivating example Why semantics
Local heap storeless semantics Shape abstraction
116
Abstract Interpretation [Cousot and Cousot, POPL ’77]
Operational semantics Abstract transformer
117
Introducing local heap semantics
Operational semantics ~ Local heap Operational semantics ’ ’ Abstract transformer
118
Outline Motivating example Why semantics
Local heap storeless semantics Shape abstraction
119
Programming model Single threaded Procedures Heap Value parameters
Recursion Heap Recursive data structures Destructive update No explicit addressing (&) No pointer arithmetic
120
Simplifying assumptions
No primitive values (only references) No globals Formals not modified
121
Storeless semantics No addresses Memory state: y=x Alias analysis
Object: 2Access paths Heap: 2Object Alias analysis x n x x.n x.n.n y=x x n y x.n y.n x.n.n y.n.n x=null y n y.n y.n.n
122
Example p? static void main() { } static List reverse(List t) {
return r; } List x = reverse(p); t n List y = reverse(q); t.n.n.n t.n.n t.n t t.n.n n t.n.n.n t t.n n n n p x.n.n.n p x.n.n x.n x x y.n.n q n y y.n y.n.n q n y y.n List z = reverse(x); z.n n z x z.n.n.n z.n.n z x r.n n r t r.n.n.n r.n.n r.n n r t r.n.n.n r.n.n p?
123
Example static void main() { } static List reverse(List t) { return r;
List x = reverse(p); L t n List y = reverse(q); t.n.n.n L t.n.n t.n t t.n.n n t.n.n.n L t t.n n n n p x.n.n.n p x.n.n x.n x x y.n.n q n y y.n y.n.n q n y y.n List z = reverse(x); p.n z.n n p z x p.n.n.n z.n.n.n p.n.n z.n.n p z x p.n p p.n.n p.n.n.n L.n r.n n L r t L.n.n.n r.n.n.n L.n.n r.n.n t L.n r.n n L r t L.n.n.n r.n.n.n L.n.n r.n.n t
124
Cutpoint labels Relate pre-state with post-state Additional roots
Mark cutpoints at and throughout an invocation
125
Cutpoint labels L {t.n.n.n} t L
Cutpoint label: the set of access paths that point to a cutpoint when the invoked procedure starts t.n.n.n L t.n.n t.n t L t L {t.n.n.n}
126
Sharing patterns L {t.n.n.n} Cutpoint labels encode sharing patterns
w.n w w p Stack sharing Heap sharing L {t.n.n.n}
127
Observational equivalence
L L (Local-heap Storeless Semantics) G G (Global-heap Store-based Semantics) L and G observationally equivalent when for every access paths AP1, AP2 AP1 = AP2 (L) AP1 = AP2 (G)
128
Main theorem: semantic equivalence
L L (Local-heap Storeless Semantics) G G (Global-heap Store-based Semantics) L and G observationally equivalent st, L ’L st, G ’G LSL GSB ’L and ’G are observationally equivalent
129
Corollaries Preservation of invariants Detection of memory leaks
Assertions: AP1 = AP2 Detection of memory leaks
130
Applications Develop new static analyses
Shape analysis Justify soundness of existing analyses
131
Related work Storeless semantics Jonkers, Algorithmic Languages ‘81
Deutsch, ICCL ‘92
132
Shape abstraction Shape descriptors represent unbounded memory states
Conservatively In a bounded way Two dimensions Local heap (objects) Sharing pattern (cutpoint labels)
133
A Shape abstraction L={t.n.n.n} r n n n t L r L r.n L.n r.n.n L.n.n
t, r.n.n.n L.n.n.n t L
134
A Shape abstraction L=* r n n n t L r L r.n L.n r.n.n L.n.n t, r.n.n.n
L.n.n.n t L
135
A Shape abstraction L t L=* n L=* r n n n t L r t, r.n L.n r.n r L r.n
136
A Shape abstraction L r t, r.n L.n r.n t L=* n
137
A Shape abstraction L={t.n.n.n} r n n n t L L=* n t L r L r.n L.n
L.n.n t, r.n.n.n L.n.n.n t L L r t, r.n L.n r.n t L=* n
138
A Shape abstraction L1={t.n.n.n} L2={g.n.n.n} d n n n g L2 r n n n t
L2.n d.n.n L2.n.n g, d.n.n.n L2.n.n.n g L2 r n n n r L1 r.n L1.n r.n.n L1.n.n t, r.n.n.n L1.n.n.n t L1 L=* n d n n d L d.n L.n t, d.n L.n t n L n n r L r.n L.n t, r.n L.n t r
139
Cutpoint-Freedom
140
How to tabulate procedures?
Procedure input/output relation Not reachable Not effected proc: local (reachable) heap local heap main() { append(y,z); } p q append(List p, List q) { … } p q x n t x n t n y z y n z p q n n
141
How to handle sharing? External sharing may break the functional view
main() { append(y,z); } p q n append(List p, List q) { … } p q n n n y t t x z y n z p q n x n
142
What’s the difference? n n n n x y append(y,z); append(y,z); t t y z x
1st Example 2nd Example append(y,z); append(y,z); x n t n n n y y t z x z
143
Cutpoints An object is a cutpoint for an invocation
Reachable from actual parameters Not pointed to by an actual parameter Reachable without going through a parameter append(y,z) append(y,z) n n n n y y n n t t x z z
144
Cutpoint freedom Cutpoint-free Invocation: has no cutpoints
Execution: every invocation is cutpoint-free Program: every execution is cutpoint-free append(y,z) append(y,z) n n n n y x t x t y z z
145
Interprocedural shape analysis for cutpoint-free programs using 3-Valued Shape Analysis
146
Memory states: 2-Valued Logical Structure
A memory state encodes a local heap Local variables of the current procedure invocation Relevant part of the heap Relevant Reachable main append p q n n x t y z
147
Memory states Represented by first-order logical structures Predicate
Meaning x(v) Variable x points to v n(v1,v2) Field n of object v1 points to v2
148
Memory states Represented by first-order logical structures Predicate
Meaning x(v) Variable x points to v n(v1,v2) Field n of object v1 points to v2 p u1 1 u2 q u1 u2 1 n u1 u2 1 p q n u1 u2
149
Operational semantics
Statements modify values of predicates Specified by predicate-update formulae Formulae in FO-TC
150
Procedure calls append(p,q) 1. Verify cutpoint freedom Compute input
z x n p q 1. Verify cutpoint freedom Compute input … Execute callee … 3 Combine output append(y,z) append body p n q y z x n
151
Procedure call: 1. Verifying cutpoint-freedom
An object is a cutpoint for an invocation Reachable from actual parameters Not pointed to by an actual parameter Reachable without going through a parameter append(y,z) append(y,z) n n n n y y x n z x z n t t Cutpoint free Not Cutpoint free
152
Procedure call: 1. Verifying cutpoint-freedom
Invoking append(y,z) in main R{y,z}(v)=v1:y(v1)n*(v1,v) v1:z(v1)n*(v1,v) isCPmain,{y,z}(v)= R{y,z}(v) (y(v)z(v1)) ( x(v) t(v) v1: R{y,z}(v1)n(v1,v)) (main’s locals: x,y,z,t) n n n n y y x n z x z n t t Cutpoint free Not Cutpoint free
153
Procedure call: 2. Computing the input local heap
Retain only reachable objects Bind formal parameters Call state p n q Input state n n y x z n t
154
Procedure body: append(p,q)
Input state Output state p n q n n p q
155
Procedure call: 3. Combine output
Call state Output state n n p n q n y x z n t
156
Procedure call: 3. Combine output
Call state Output state n n n n n y p x z q n t Auxiliary predicates y n z x t inUc(v) inUx(v)
157
Observational equivalence
CPF CPF (Cutpoint free semantics) GSB GSB (Standard semantics) CPF and GSB observationally equivalent when for every access paths AP1, AP2 AP1 = AP2 (CPF) AP1 = AP2 (GSB)
158
Observational equivalence
For cutpoint free programs: CPF CPF (Cutpoint free semantics) GSB GSB (Standard semantics) CPF and GSB observationally equivalent It holds that st, CPF ’CPF st, GSB ’GSB ’CPF and ’GSB are observationally equivalent
159
Introducing local heap semantics
Operational semantics ~ Local heap Operational semantics ’ ’ Abstract transformer
160
Shape abstraction Abstract memory states represent unbounded concrete memory states Conservatively In a bounded way Using 3-valued logical structures
161
3-Valued logic 1 = true 0 = false 1/2 = unknown
A join semi-lattice, 0 1 = 1/2
162
Canonical abstraction
y z n n n n n x n n t y z x n t
163
Instrumentation predicates
Record derived properties Refine the abstraction Instrumentation principle [SRW, TOPLAS’02] Reachability is central! Predicate Meaning rx(v) v is reachable from variable x robj(v1,v2) v2 is reachable from v1 ils(v) v is heap-shared c(v) v resides on a cycle
164
Abstract memory states (with reachability)
z n n n n n x rx rx rx rx rx rx rx,ry rx,ry rz rz rz rz rz rz n n t rt rt rt rt rt rt y rx rx,ry n z rz x rt t
165
The importance of reachability: Call append(y,z)
x rx rx rx rx,ry rz rz rz n n t rt rt rt y z n y z x n t n n n n x rx rx rx,ry rz rz n n t rt rt
166
Abstract semantics Conservatively apply statements on abstract memory states Same formulae as in concrete semantics Soundness guaranteed [SRW, TOPLAS’02]
167
Procedure calls append(p,q) 1. Verify cutpoint freedom Compute input
z x n p q 1. Verify cutpoint freedom Compute input 2 … Execute callee … 3 Combine output append(y,z) append body p n q y z x n
168
Conservative verification of cutpoint-freedom
Invoking append(y,z) in main R{y,z}(v)=v1:y(v1)n*(v1,v) v1:z(v1)n*(v1,v) isCPmain,{y,z}(v)= R{y,z}(v) (y(v)z(v1)) ( x(v) t(v) v1: R{y,z}(v1)n(v1,v)) n n n n n y ry ry rz y ry ry ry rx rz n n n z n x z rt rt t rt rt t Cutpoint free Not Cutpoint free
169
Interprocedural shape analysis
Tabulation exits p p call f(x) y x x y
170
Interprocedural shape analysis
Analyze f p p Tabulation exits p p call f(x) y x x y
171
Interprocedural shape analysis
Procedure input/output relation Input Output q q rq rq p q p q n rp rq rp rq rp p n n … q p q n n n rp rp rq rp rp rp rq
172
Interprocedural shape analysis
Reusable procedure summaries Heap modularity q p rp rq n y n z x append(y,z) rx ry rz y x z n rx ry rz append(y,z) g h i k n rg rh ri rk append(h,i)
173
Plan Cutpoint freedom Non-standard concrete semantics
Interprocedural shape analysis Prototype implementation
174
Prototype implementation
TVLA based analyzer Soot-based Java front-end Parametric abstraction Data structure Verified properties Singly linked list Cleanness, acyclicity Sorting (of SLL) + Sortedness Unshared binary trees Cleaness, tree-ness
175
Iterative vs. Recursive (SLL)
585
176
Inline vs. Procedural abstraction
// Allocates a list of // length 3 List create3(){ … } main() { List x1 = create3(); List x2 = create3(); List x3 = create3(); List x4 = create3();
177
Call string vs. Relational vs
Call string vs. Relational vs. CPF [Rinetzky and Sagiv, CC’01] [Jeannet et al., SAS’04]
178
Summary Cutpoint freedom Non-standard operational semantics
Interprocedural shape analysis Partial correctness of quicksort Prototype implementation
179
Application Properties proved Recursive Iterative
Absence of null dereferences Listness preservation API conformance Recursive Iterative Procedural abstraction
180
Related Work Interprocedural shape analysis Local Reasoning
Rinetzky and Sagiv, CC ’01 Chong and Rugina, SAS ’03 Jeannet et al., SAS ’04 Hackett and Rugina, POPL ’05 Rinetzky et al., POPL ‘05 Local Reasoning Ishtiaq and O’Hearn, POPL ‘01 Reynolds, LICS ’02 Encapsulation Noble et al. IWACO ’03 ...
181
Summary Operational semantics Applications Storeless Local heap
Cutpoints Equivalence theorem Applications Shape analysis May-alias analysis
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.