Download presentation
Presentation is loading. Please wait.
Published byIda Widjaja Modified over 6 years ago
1
Probing New Physics with Neutral Current Measurements
Shufang Su • U. of Arizona
2
Outline Precision measurements vs. direct detection
- Precision measurements vs. direct detection Neutral current measurements parity violating electron scattering ee Moller scattering (SLAC E158) ep elastic scattering (Jlab Qweak) atomic parity violation (APV) neutrino-nucleus deep inelastic scattering (NuTeV) - proble new physics beyond SM - some QCD issue - future experiments Conclusion S. Su subZ2004
3
Precision measurements vs. direct detection
- mt=178.0 4.3 GeV (direct) (indirect) Direct vs. indirect detection provide complementary information success of SM consistency check of any new physics scenario LEP EWWG LEP EWWG 2004 winter S. Su subZ2004
4
Low energy precision measurements
address questions difficult to study at high energy weak interactions (parity violation) high precision low energy experiment available - muon g-2: M=m , new 2x10-9, exp < 10-9 -decay, -decay: M=mW , new 10-3, exp 10-3 parity-violating electron scattering: M=mW , new 10-3, 1/QWe,p 10 more sensitive to new physics need exp “easier” experiment - size of loop effects from new physics: (/)(M/Mnew)2 QWe,p 1-4 sin2W 0.1 probe new physics off the Z-resonance - sensitive to new physics not mix with Z S. Su subZ2004
5
Neutral Current: Test of sin2W running
- Weak mixing angle sinW courtesy of Erler and Carlini MS g sinW = g’ cosW = e Norval Fortson:APV Bob McKeown: ee (E158) Shelley Page: ep (Qweak) Kevin McFarland: (NuTeV) In addition Janet Conrad (Friday): reactor based -e- scattering Talk in neutral current session - sin2W(0) - sin2W(mZ2) = - QWCs: agree Q2=0 E158 Runs I+II (Preliminary) NuTeV APV(Cs) - NuTeV: +3 Q2=20 (GeV)2 Weak mixing angle sin2W parity-violating electron scattering (PVES) Q2=0.03 (GeV)2 - ee Moller scattering (SLAC) QWe - ep elastic scattering (J-lab) QWp Anticipated final errors ee E158 ep Qweak sin2W scale Q (GeV) S. Su subZ2004
6
NC exp as a indirect probe of new physics
- SM is a low energy approximation of a more fundamental theory NC exp: consistency check of SM complementary to direct new physics searches distinguish various new physics SUSY: minimal Supersymmetric extension of SM (MSSM) each SM particle superpartner - with R-parity : loop corrections - without R-parity: tree-level contribution extra Z’ - exists in extension of SM - constraints from Z-pole observable (mix with Z) leptoquark extra-dimension … spin differ by ½ S. Su subZ2004
7
PVES:E158 and Qweak A N+-N- ALR QWf N++N- V geA = Ie3
weak charge QWf = 2gfV = 2 If3 -4Qfs2 ep Qweak exp QWp ee Moller exp QWe QWe,p tree 1-4s2 -(1-4s2) QWe,p loop exp precision 4% 9% sin2W SM running 10 8 clean environment: Hydrogen target theoretically clean: small hadronic uncertainties tree level 0.1 sensitive to new physics QWCs : sin2W = NuTeV: sin2W = S. Su subZ2004
8
Sensitivity to new physics scale
- Ramsey-Musolf(1999) O(1) : new physics scale Take QWp=4% courtesy of Carlini Non-perturbative theory g » 2 » 29 TeV Extra Z’ (GUT) g » mZ’ » 2.1 TeV probe new physics scale comparable to LHC confirmation of LHC discovery (couplings, charges) S. Su subZ2004
9
MSSM correction to weak charge
- QWf = (2Tf3 - 4Qf s2) + f Kurylov, Ramsey-Musolf, Su (2003) QWe and QWp correlated dominant : (<0) negative shift in sin2W MSSM (QWp)SUSY / (QWp)SM < 4%, (QWe)SUSY / (QWe)SM < 8% S. Su subZ2004
10
R-parity violating (RPV)
RPV operators contribute to QWe,p at tree level Kurylov, Ramsey-Musolf, Su (2003) Exp constraints decay: |Vud| = APV(Cs): QWCs = Re/ : Re/ = G: G = RPV 95% CL MSSM loop QpW No SUSY dark matter I) Obtain 95% CL allowed region in RPV coefficients II) Evaluate QWe and QWp G S. Su subZ2004
11
Correlation between QWp , QWe
- Distinguish new physics Erler, Kurylov and Ramsey-Musolf (2003) exp MSSM: extra Z’: RPV SUSY leptoquark QWp QWe SM Distinguish via APV QWCs Combinations of NC exps could be used to distinguish various new physics S. Su subZ2004
12
? Extract QWp use kinematics to simplify: at forward angle
- use kinematics to simplify: at forward angle ? Musolf et. al., (1994) measure F(,q2) over finite range in q2, extrapolate F to small q2 existing PVES: SAMPLE, HAPPEX, G0, A4 minimize effect of F by making q2 small q2 0.03 GeV2, still enough statistics QpW / QpW | hadronic effects 2 % S. Su subZ2004
13
QCD correction to ep scattering
- Box diagram contribution to QWP Erler, Kurylov and Ramsey-Musolf (2003) e p Z e p W e p Z e p Z suppression non-calculable Similar to nuclear -decay e e- n p W QWP 26% 3% 6% kloop » O(mW) kloop » O(mZ) QCD kloop O(mZ) |CW| (CKM unitarity) |CZ| 2 non-perturbative using OPE (pQCD) QWP (QCD) -0.7% -0.08% 0.65% Total theoretical uncertainty » 0.8% S. Su subZ2004
14
Outlook: PV electron scattering
- Kurylov, Ramsey-Musolf, Su (2003) MSSM RPV Erler NuTeV Linear Collider e-e- sin2W DIS-Parity,JLab DIS-Parity, SLAC APV e+e- LEP, SLD SLAC E158 (ee) JLab Moller (ee) JLab QWeak (ep) Q (GeV) S. Su subZ2004
15
Atomic parity violation
- Two approaches rotation of polarization plane of linearly polarized light apply external E field parity forbidden atomic transition Boulder group: cesium APV 0.35% exp uncertainty wood et. Al. (1997) QW(Z,N)=(2Z+N)QWu+(Z+2N)QWd ¼ Z(1-4 sin2W)-N ¼ -N finite nuclear size nucleon substructure nuclear spin-dependent term » 0.15% Pollock and Wieman (2001) Musolf (1994) Erler, Kurylov and Ramsey-Musolf (2003) atomic structure 1% Blundell et. al. (1990, 1992) Dzuba et. Al. (1989) reduced error 0.6% (exp + theory) via transit dipole amplitude measurement Bennett and Wieman (1999) + 2.5 deviation (2002) Breit interaction Derevianko (2000), Dzuba et. al. (2001) Uehling potential Johnson et. al. (2001), Milstein et. al. (2002) QED self-energy and vertex Dzuba et. Al. (2002), Kuchiev and Flambaum (2002), Milstein et. al. (2002) QWCs (exp) = QWCs(SM)= agree S. Su subZ2004
16
Sensitivity to new physics
- Distinguish new physics QW (Z,N)=(2Z+N) QWu +(2N+Z) QWd QWu >0 QWd <0 QW(Z,N) / QW(Z,N) < 0.2 % for Cs MSSM exp MSSM: extra Z’: QWp QWe QWCs small sizable SM Erler, Kurylov and Ramsey-Musolf (2003) S. Su subZ2004
17
Outlook -- APV Paris group: more precise Cs APV
Seattle group: Ba+ APV 6S1/2 5D3/2 Berkeley group: isotope Yb APV eliminate large atomic structure theory uncertainties 0.2% uncertainties comparable to QWp in sensitivity to new physics Ramsey-Musolf(1999) S. Su subZ2004
18
NuTeV experiment NC CC gL,R2=(uL,R)2+(dL,R)2
- NC CC gL,R2=(uL,R)2+(dL,R)2 R= R= - exp fit: (gLeff)2=0.30050.0014, (gReff)2=0.03100.0011 SM EW fit: (gLeff)2=0.3042, (gReff)2=0.0301 S. Su subZ2004
19
NuTeV anomaly … exp fit (=1): sin2Won-shell = 0.2277 0.0016
SM fit to Z-pole: sin2Won-shell = (3 away) To explain NuTeV anomaly nuclear shadowing Miller and Thomas (2002), Zeller et. Al. (2002), Kovalenkov, schmidt and Yang (2002) asymmetry in strange sea distribution Davidson, Forte, Gambino, Rius and Strumia (2002), Goncharov et. al. (2001) isospin symmetry breaking Bodek et. al. (1999), Zeller et. Al. (2002) QCD corrections Dobrescu and Ellis (2003), Kretzer et. al. (2003), Davidson et. al. (2002) … S. Su subZ2004
20
New physics explanation
- Difficult ! Supersymmetry: R, 0 Kurylov, Ramsey-Musolf, Su (2003), Davidson, Forte, Gambino, Rius and Strumia (2002) Extra Z’ : family non-universal, finetuning Langacker and Plumacher (2000) Leptoquark: tune mass splitting Davidson, Forte, Gambino, Rius and Strumia (2002) mixing with extra heavy neutrino: constraints from other observables Babu and Pati (2002), Loinaz et. al. (2003) - MSSM RPV reactor based -e- scattering sin2W Conrad, Link and Shaevitz (2004) (Janet Conrad, Friday) - S. Su subZ2004
21
Conclusion NC exp: precision measurements of sin2W at low energy
- NC exp: precision measurements of sin2W at low energy - PV ee, ep scattering (E158, Qweak) - APV measurements - NuTeV consistency check of SM sensitive to new physics complementary to direct searches combinations of several NC exp distinguish various new physics uncertainties caused by QCD - extract from experimental measurements - SM predictions S. Su subZ2004
22
Talks in this workshop Talk in neutral current session
- Norval Fortson:APV Bob McKeown: ee (E158) Shelley Page: ep (Qweak) Kevin McFarland: (NuTeV) In addition Janet Conrad (Friday): reactor based -e- scattering Talk in neutral current session - S. Su subZ2004
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.