Download presentation
Presentation is loading. Please wait.
Published byΔαΎΞΉΞ΄Ξ·Ο ΞΞ½ΟΟΞ½ΞΉΞ¬Ξ΄Ξ·Ο Modified over 6 years ago
1
70th International Symposium on Molecular Spectroscopy
On the Stark Effect in Open Shell Complexes Exhibiting Partially Quenched Electronic Angular Momentum 70th International Symposium on Molecular Spectroscopy Gary E. Douberly and Christopher P. Moradi Department of Chemistry, University of Georgia Athens, Georgia, USA
2
Stark Effect: Closed-Shell Symmetric Top
Parity conserving basis βπ=0; βπΎ=0; βπ½=0,Β±1
3
Stark Effect: Closed-Shell Symmetric Top
Stark field leads to an interaction that couples opposite parity levels that are degenerate at zeroth order. This leads to a linear stark effect for states having K not equal to zero. First-Order (Linear) Stark Effect
4
Stark Effect: Closed-Shell Symmetric Top
Second-Order (Quadratic) Stark Effect States differing in J by one are non-degenerate at zeroth order, but are coupled via Stark effect. The Stark shift is ~quadratic with field, i.e. second-order (quadratic stark effect)
5
Stark Effect: Closed-Shell Symmetric Top
π΄=1 c m β1 π΅=0.1 c m β1 |π½,πΎ = |2,1,Β± π΄=Β±π |π½,πΎ = |3,0 |π½,πΎ = |1,1,Β± π΄=Β±π π΄=π π=0 |π½,πΎ = |2,0 π=Β±1 π=Β±2 |π½,πΎ = |1,0 π=0 |π½,πΎ = |0,0 π=Β±1 π=0
7
ο²theory β ο140 cm ο 1 ο²gas ββ148 cm ο 1
8
ο²He = ο165(1) cmο1
9
Origin of Angular Momentum Quenching
2B2 2B2 π» π = π 2 [ T π³ + T β2 2 π³ ] πββ150 cm β1 2B1 π» π = Ξ΅ 1 cos π + Ξ΅ 2 cos 2π β―
10
unquenched π ππ β π Β±ππ π ππ π³ π§ π ππ =Β±β quenched
π ππ β (π ππ + π βππ ) π ππ π³ π§ π ππ =0 quenched 2B2 2ο1/2 π΄ ππ 2 + π 2 π π΄ ππ 2ο3/2 unquenched π ππ β π Β±ππ π ππ π³ π§ π ππ =Β±β 2B1 Increasing π Barrier to free orbital motion decouples spin angular momentum from OH axis Case (a) coupling Case (b) coupling
11
Parity conserving Hundβs case (a) basis π =1/2; π=1
. π» = π» πππ‘ + π» ππ + π» πΆπ· + π» π |π½,π,π, π,π = |π½,π,π, π + π β1 (π½β1/2) |π½,βπ,βπ, βπ π» π = π 2 [ T π³ + T β2 2 π³ ] π½πππππ π» π π½ β² π β² π β² π β² π β² π β² = π 2 πΏ π½, π½ β² πΏ π, π β² πΏ π, π β² πΏ π, βπ β² πΏ π, π β² πΏ π, π β² π― πΊπΆ + π― π = π΄ ππ /2 π/2 π/2 βπ΄ ππ /2 ππ¬β‘ 2π΅ 2 β 2π΅ 1 = π΄ ππ 2 + π 2 2B2 2B1 J. Chem. Phys. (2004) 121, 3019; J. Chem. Phys. (2015) 142,
12
|π½,π,π, π,π = 1 2 |π½,π,π, π + π β1 (π½β1/2) |π½,βπ,βπ, βπ
π― = π― πππ + π― πΊπΆ + π― πͺπ« + π― π |π½,π,π, π,π = |π½,π,π, π + π β1 (π½β1/2) |π½,βπ,βπ, βπ π―= π΄+ π΅+πΆ 4 +π΄ ππ 2 π 2 β π΅+πΆ 2 π 2 β π΅+πΆ π΄+ π΅+πΆ 4 βπ΄ ππ π΅+πΆ 4 βπ΄ ππ 2 π 2 β π΅βπΆ 2 π 2 β π΅βπΆ π΄+ π΅+πΆ 4 +π΄ ππ 2 π½= 1 2 ; π=Β±1; π=π+π |π= 1 2 ,π=+3/2 |π= 1 2 ,π=β1/2 |π= 1 2 ,π=+1/2 |π= 1 2 ,π=β3/2 Parity splittings arise from off-diagonal matrix elements as ο² increases. J.S terms in Hrot and Hq couple different electronic states and lead to case b limit π½,π,π,π, π π» πππ‘ π½,π,π,π,π =π΄ π 2 + π 2 β2ππ + π΅+πΆ 2 [π½ π½+1 β π 2 ]
13
2B2 ΞπΈβ‘ 2π΅ 2 β 2π΅ 1 = π΄ ππ 2 + π 2 2B1
14
ο²gas =β148 cm ο 1 cm-1 Parity Doubling |π·= π π ,π=+π/π |π·= π π ,π=+π/π
15
ο²theory =β148 cm ο 1
16
ο² a-type simulations Trot = 0.35 K Half-integer quantum numbers (J, P)
like a symmetric top in a degenerate electronic state ο² Integer quantum numbers (N, Ka) like an asymmetric top with spin-rotation interaction a Trot = 0.35 K b
17
ο²He = β165(1) cmο1 J. Chem. Phys. (2015) 142,
18
Accepted last week
19
a b β π π πΈ 2 π½ β² +1 2π½+1 1/2 β1 πβπ π½ 1 π½β² βπ 0 πβ² π½ 1 π½β² βπ 0 πβ² πΏ π β² π πΏ π β² π πΏ π β² βπ
20
a-type OH stretch Angular Momentum Quenching 4 kV/cm
21
Large parity splitting at zero field = Second-order Stark Effect
B2 nuclear spin isomer A1 nuclear spin isomer No parity splitting at zero field = First-order Stark Effect ο²He = β165(1) cmο1
23
Elaser EStark οM = Β±1
24
Acknowledgments Paul Raston; Tao Liang; Mark Marshall (Amherst College) Support: U.S. Department of Energy, Office of Science (BES-GPCP)
26
Elaser EStark οM = 0
27
b-type CH stretch Elaser EStark Elaser EStark οM = 0 οM = Β±1
28
ο² b-type simulations Trot = 0.35 K Half-integer quantum numbers (J, P)
like a symmetric top in a degenerate electronic state ο² Integer quantum numbers (N, Ka) like an asymmetric top with spin-rotation interaction a Trot = 0.35 K b
29
ο²He = β165(1) cm ο 1
30
ο²theory = ο148 cm ο 1
31
Helium solvation affects electronic states differently
2B2 2B1 ΞπΈβ‘ 2π΅ 2 β 2π΅ 1 = π΄ ππ 2 + π 2 π« π¬ π―π =πππ π π¦ βπ π« π¬ π―π β π« π¬ πππ =+ππ π π¦ βπ ο²theory = ο148 cmο1 ο²gas = ο148(1) cmο1 ο²He = ο165(1) cmο1 Helium solvation affects electronic states differently
32
Helium solvation effect is also evident in OH infrared spectrum.
Gas Helium 2ο1/2 ASO ASO+ (>10 cm-1) 2ο3/2 Helium solvation effect is also evident in OH infrared spectrum. The Q(3/2) to R(3/2) spacing is larger than in gas phase, indicative of a larger effective splitting between 2ο3/2 and 2ο1/2 states. The 2ο3/2 state has a free energy of solvation larger than for 2ο1/2. P.L. Raston, T. Liang, GED, J. Phys. Chem. A (2013) 117, 8103.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.