Presentation is loading. Please wait.

Presentation is loading. Please wait.

70th International Symposium on Molecular Spectroscopy

Similar presentations


Presentation on theme: "70th International Symposium on Molecular Spectroscopy"β€” Presentation transcript:

1 70th International Symposium on Molecular Spectroscopy
On the Stark Effect in Open Shell Complexes Exhibiting Partially Quenched Electronic Angular Momentum 70th International Symposium on Molecular Spectroscopy Gary E. Douberly and Christopher P. Moradi Department of Chemistry, University of Georgia Athens, Georgia, USA

2 Stark Effect: Closed-Shell Symmetric Top
Parity conserving basis βˆ†π‘€=0; βˆ†πΎ=0; βˆ†π½=0,Β±1

3 Stark Effect: Closed-Shell Symmetric Top
Stark field leads to an interaction that couples opposite parity levels that are degenerate at zeroth order. This leads to a linear stark effect for states having K not equal to zero. First-Order (Linear) Stark Effect

4 Stark Effect: Closed-Shell Symmetric Top
Second-Order (Quadratic) Stark Effect States differing in J by one are non-degenerate at zeroth order, but are coupled via Stark effect. The Stark shift is ~quadratic with field, i.e. second-order (quadratic stark effect)

5 Stark Effect: Closed-Shell Symmetric Top
𝐴=1 c m βˆ’1 𝐡=0.1 c m βˆ’1 |𝐽,𝐾 = |2,1,Β± 𝑴=±𝟏 |𝐽,𝐾 = |3,0 |𝐽,𝐾 = |1,1,Β± 𝑴=±𝟏 𝑴=𝟎 𝑀=0 |𝐽,𝐾 = |2,0 𝑀=Β±1 𝑀=Β±2 |𝐽,𝐾 = |1,0 𝑀=0 |𝐽,𝐾 = |0,0 𝑀=Β±1 𝑀=0

6

7 theory β‰ˆ ο€­140 cm ο€­ 1 gas β‰ˆβˆ’148 cm ο€­ 1

8 He = ο€­165(1) cmο€­1

9 Origin of Angular Momentum Quenching
2B2 2B2 𝐻 π‘ž = 𝜌 2 [ T 𝑳 + T βˆ’2 2 𝑳 ] πœŒβ‰ˆβˆ’150 cm βˆ’1 2B1 𝐻 π‘ž = Ξ΅ 1 cos πœ‘ + Ξ΅ 2 cos 2πœ‘ β‹―

10 unquenched πœ“ 𝑒𝑙 ∝ 𝑒 Β±π‘–πœ‘ πœ“ 𝑒𝑙 𝑳 𝑧 πœ“ 𝑒𝑙 =±ℏ quenched
πœ“ 𝑒𝑙 ∝ (𝑒 π‘–πœ‘ + 𝑒 βˆ’π‘–πœ‘ ) πœ“ 𝑒𝑙 𝑳 𝑧 πœ“ 𝑒𝑙 =0 quenched 2B2 21/2 𝐴 𝑆𝑂 2 + 𝜌 2 𝜌 𝐴 𝑆𝑂 23/2 unquenched πœ“ 𝑒𝑙 ∝ 𝑒 Β±π‘–πœ‘ πœ“ 𝑒𝑙 𝑳 𝑧 πœ“ 𝑒𝑙 =±ℏ 2B1 Increasing 𝜌 Barrier to free orbital motion decouples spin angular momentum from OH axis Case (a) coupling Case (b) coupling

11 Parity conserving Hund’s case (a) basis 𝑠=1/2; 𝑙=1
. 𝐻 = 𝐻 π‘Ÿπ‘œπ‘‘ + 𝐻 𝑆𝑂 + 𝐻 𝐢𝐷 + 𝐻 π‘ž |𝐽,𝑃,πœ†, 𝜎,πœ– = |𝐽,𝑃,πœ†, 𝜎 + πœ– βˆ’1 (π½βˆ’1/2) |𝐽,βˆ’π‘ƒ,βˆ’πœ†, βˆ’πœŽ 𝐻 π‘ž = 𝜌 2 [ T 𝑳 + T βˆ’2 2 𝑳 ] π½π‘ƒπ‘€πœ†πœŽπœ– 𝐻 π‘ž 𝐽 β€² 𝑃 β€² 𝑀 β€² πœ† β€² 𝜎 β€² πœ– β€² = 𝜌 2 𝛿 𝐽, 𝐽 β€² 𝛿 𝑃, 𝑃 β€² 𝛿 𝑀, 𝑀 β€² 𝛿 πœ†, βˆ’πœ† β€² 𝛿 𝜎, 𝜎 β€² 𝛿 πœ–, πœ– β€² 𝑯 𝑺𝑢 + 𝑯 𝒒 = 𝐴 𝑆𝑂 /2 𝜌/2 𝜌/2 βˆ’π΄ 𝑆𝑂 /2 πœŸπ‘¬β‰‘ 2𝐡 2 βˆ’ 2𝐡 1 = 𝐴 𝑆𝑂 2 + 𝜌 2 2B2 2B1 J. Chem. Phys. (2004) 121, 3019; J. Chem. Phys. (2015) 142,

12 |𝐽,𝑃,πœ†, 𝜎,πœ– = 1 2 |𝐽,𝑃,πœ†, 𝜎 + πœ– βˆ’1 (π½βˆ’1/2) |𝐽,βˆ’π‘ƒ,βˆ’πœ†, βˆ’πœŽ
𝑯 = 𝑯 𝒓𝒐𝒕 + 𝑯 𝑺𝑢 + 𝑯 π‘ͺ𝑫 + 𝑯 𝒒 |𝐽,𝑃,πœ†, 𝜎,πœ– = |𝐽,𝑃,πœ†, 𝜎 + πœ– βˆ’1 (π½βˆ’1/2) |𝐽,βˆ’π‘ƒ,βˆ’πœ†, βˆ’πœŽ 𝑯= 𝐴+ 𝐡+𝐢 4 +𝐴 𝑆𝑂 2 𝜌 2 βˆ“ 𝐡+𝐢 2 𝜌 2 βˆ“ 𝐡+𝐢 𝐴+ 𝐡+𝐢 4 βˆ’π΄ 𝑆𝑂 𝐡+𝐢 4 βˆ’π΄ 𝑆𝑂 2 𝜌 2 βˆ“ π΅βˆ’πΆ 2 𝜌 2 βˆ“ π΅βˆ’πΆ 𝐴+ 𝐡+𝐢 4 +𝐴 𝑆𝑂 2 𝐽= 1 2 ; πœ–=Β±1; πœ”=πœ†+𝜎 |𝑃= 1 2 ,πœ”=+3/2 |𝑃= 1 2 ,πœ”=βˆ’1/2 |𝑃= 1 2 ,πœ”=+1/2 |𝑃= 1 2 ,πœ”=βˆ’3/2 Parity splittings arise from off-diagonal matrix elements as  increases. J.S terms in Hrot and Hq couple different electronic states and lead to case b limit 𝐽,𝑃,πœ†,𝜎, πœ– 𝐻 π‘Ÿπ‘œπ‘‘ 𝐽,𝑃,πœ†,𝜎,πœ– =𝐴 𝑃 2 + πœ” 2 βˆ’2π‘ƒπœ” + 𝐡+𝐢 2 [𝐽 𝐽+1 βˆ’ 𝑃 2 ]

13 2B2 Δ𝐸≑ 2𝐡 2 βˆ’ 2𝐡 1 = 𝐴 𝑆𝑂 2 + 𝜌 2 2B1

14 gas =βˆ’148 cm ο€­ 1 cm-1 Parity Doubling |𝑷= 𝟏 𝟐 ,𝝎=+πŸ‘/𝟐 |𝑷= πŸ‘ 𝟐 ,𝝎=+πŸ‘/𝟐

15 theory =βˆ’148 cm ο€­ 1

16  a-type simulations Trot = 0.35 K Half-integer quantum numbers (J, P)
like a symmetric top in a degenerate electronic state  Integer quantum numbers (N, Ka) like an asymmetric top with spin-rotation interaction a Trot = 0.35 K b

17 He = βˆ’165(1) cmο€­1 J. Chem. Phys. (2015) 142,

18 Accepted last week

19 a b βˆ’ πœ‡ π‘Ž 𝐸 2 𝐽 β€² +1 2𝐽+1 1/2 βˆ’1 π‘€βˆ’π‘ƒ 𝐽 1 𝐽′ βˆ’π‘€ 0 𝑀′ 𝐽 1 𝐽′ βˆ’π‘ƒ 0 𝑃′ 𝛿 πœ† β€² πœ† 𝛿 𝜎 β€² 𝜎 𝛿 πœ– β€² βˆ’πœ–

20 a-type OH stretch Angular Momentum Quenching 4 kV/cm

21 Large parity splitting at zero field = Second-order Stark Effect
B2 nuclear spin isomer A1 nuclear spin isomer No parity splitting at zero field = First-order Stark Effect He = βˆ’165(1) cmο€­1

22

23 Elaser EStark M = Β±1

24 Acknowledgments Paul Raston; Tao Liang; Mark Marshall (Amherst College) Support: U.S. Department of Energy, Office of Science (BES-GPCP)

25

26 Elaser EStark M = 0

27 b-type CH stretch Elaser EStark Elaser EStark M = 0 M = Β±1

28  b-type simulations Trot = 0.35 K Half-integer quantum numbers (J, P)
like a symmetric top in a degenerate electronic state  Integer quantum numbers (N, Ka) like an asymmetric top with spin-rotation interaction a Trot = 0.35 K b

29 He = βˆ’165(1) cm ο€­ 1

30 theory = ο€­148 cm ο€­ 1

31 Helium solvation affects electronic states differently
2B2 2B1 Δ𝐸≑ 2𝐡 2 βˆ’ 2𝐡 1 = 𝐴 𝑆𝑂 2 + 𝜌 2 𝚫 𝑬 𝑯𝒆 =πŸπŸπŸ” 𝐜 𝐦 βˆ’πŸ 𝚫 𝑬 𝑯𝒆 βˆ’ 𝚫 𝑬 π’ˆπ’‚π’” =+πŸπŸ’ 𝐜 𝐦 βˆ’πŸ theory = ο€­148 cmο€­1 gas = ο€­148(1) cmο€­1 He = ο€­165(1) cmο€­1 Helium solvation affects electronic states differently

32 Helium solvation effect is also evident in OH infrared spectrum.
Gas Helium 21/2 ASO ASO+ (>10 cm-1) 23/2 Helium solvation effect is also evident in OH infrared spectrum. The Q(3/2) to R(3/2) spacing is larger than in gas phase, indicative of a larger effective splitting between 23/2 and 21/2 states. The 23/2 state has a free energy of solvation larger than for 21/2. P.L. Raston, T. Liang, GED, J. Phys. Chem. A (2013) 117, 8103.


Download ppt "70th International Symposium on Molecular Spectroscopy"

Similar presentations


Ads by Google