Download presentation
Presentation is loading. Please wait.
Published byAde Halim Modified over 6 years ago
1
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
AMANDA L. STEBER, CRISTOBAL PEREZ, BERHANE TEMELSO, GEORGE C. SHIELDS, ANOUK M. RIJS, ZBIGNIEW KISIEL, and MELANIE SCHNELL Styling: MPSD color:
2
Introduction PAH Hypothesis: No identification of an individual PAH
Used to explain UIR bands in the mid IR from 3.3 – 12.7 microns Postulates PAHs are the most abundant molecules in space after H2 and CO An estimated 20% of the total galactic carbon is locked in PAHs1 Believed to help form ice grains No identification of an individual PAH Cyclic water trimer has only been observed once in microwave spectroscopy2 due to tunneling effects 1 Joblin, C. & Mulas, G. EAS Publ. Ser. 35, 133–152 (2009). 2 Arunan, E., Emilsson, T. & Gutowsky, H. S. J. Am. Chem. Soc. 116, 8418–8419 (1994).
3
Instrumentation 2-8 GHz Chirped pulse Fourier transform microwave spectrometer Nozzle heated to between ~ External water reservoir 1:1 water mixtures for 16O:18O mixtures Brown, G. G. et al. Rev. Sci. Instrum. 79, (2008). Schmitz, D., Alvin Shubert, V., Betz, T. & Schnell, M. J. Mol. Spectrosc. 280, 77–84 (2012).
4
Acenaphthene Monomer 800,000 acquisitions 2.5 bar neon
S. Thorwirth et al. Astrophys. J., 662, 1309 (2007).
5
Acenaphthene – water complexes
2.5 million acquisitions 3 bar neon
6
Acenaphthene – water complexes
2.5 million acquisitions 3 bar neon
7
Acenaphthene – water structures
Calculations: MP2/aug-cc-pVTZ
8
Acenaphthene – water structures
r0 vs rs structures r0 vs ab initio: RMSD = 0.12Å
9
3water complexes Arunan, E., Emilsson, T. & Gutowsky, H. S.
J. Am. Chem. Soc. 116, 8418–8419 (1994). Keutsch, F. N., Cruzan, J. D. & Saykally, R. J. Chem. Rev. 103, 2533–2578 (2003). Ouyang, B., Starkey, T. G. & Howard, B. J. J. Phys. Chem. A 111, 6165–6175 (2007). Pérez, C. et al. Angew. Chem. Int. Ed. 54, 979–982 (2015). Pérez, C. et al. J. Phys. Chem. Lett. 7, 154–160 (2016).
10
Cyclic (H2O)3 comparison
Ace - (H2O)3 Complex Ab initio r0 structure rs structure O-O distance (Å) A-B 2.782 2.790 2.810 (10) 2.812 (30) B-C 2.766 2.856 (9) 2.851 (11) A-C 2.891 2.953 (10) 2.942 (28) Keutsch, F. N., Cruzan, J. D. & Saykally, R. J. Chem. Rev. 103, 2533–2578 (2003).
11
Binding Energies SAPT2+3/6-311++G** MP2 ΔEelst ΔEexch ΔEind ΔEdisp
ΔEtot (H2O)2 -8.90 8.17 -2.40 -1.35 -4.47 Benzene-H2O -2.98 3.87 -1.04 -2.34 -2.49 -3.28 Ace-H2O -4.81 6.62 -1.22 -4.23 -3.64 -4.32 Ace-(H2O)2 --- -13.29 Ace-(H2O)3 -24.99
12
(Ace)2 – H2O complex 18O
13
ΔE between rank 227 and rank 399
(Ace)2 – H2O complex Constrained Experimental M062x/ 6-31++G** G** MP2/ aug-cc-pVDZ 2A1W 2A1W_18O hf3c rank 227 rank 399 A (MHz) (22) (18) 355 349 B (MHz) (17) (16) 215 217 245 C (MHz) (17) (17) 194 196 236 ΔJ (kHz) 0.0130(12) 0.0139(11) ΔJK (kHz) 0.9645(54) 1.3173(51) ΔK (kHz) (46) (46) δJ (kHz) --- δK (kHz) -1.129(23) -1.505(25) # lines 83 88 σ (kHz) 4.44 4.29 ΔE between rank 227 and rank 399 M062x: ΔE = 0.46 kcal/mol MP2: ΔE = 2.84 kcal/mol
14
(Ace)2 – H2O complex Experimental M062x/ 6-31++G** 6-311++G**
Constrained MP2/ aug-cc-pVDZ 2A1W 2A1W_18O hf3c rank 227 rank 399 A (MHz) (22) (18) 355 349 B (MHz) (17) (16) 215 217 245 C (MHz) (17) (17) 194 196 236 hf3c Rank 227 Rank 399
15
(Ace)2 – H2O complex Calculations: M062x/6-31++G**
16
Conclusions Acenaphthene KRA structure determined
Ace – (H2O)n complexes observed and structure determined (Ace)2 – H2O observed Distorted cyclic water trimer observed for the three water complex Implications for ice grain formation
17
Thank you for your attention!
Acknowledgement Thank you for your attention! Funding: CUI – Louise Johnson Fellowship
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.