Download presentation
Presentation is loading. Please wait.
Published byMaria McKinney Modified over 6 years ago
1
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2009
Professor Ronald L. Carter
2
S-R-H rec for excess min carr
For n-type low-level injection and net excess minority carriers, (i.e., no > dn = dp > po = ni2/no), U = dp/tp, (prop to exc min carr) For p-type low-level injection and net excess minority carriers, (i.e., po > dn = dp > no = ni2/po), U = dn/tn, (prop to exc min carr) L 14 Oct 08
3
Minority hole lifetimes
Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991 The parameters used in the fit are τo = 10 μs, Nref = 1×1017/cm2, and CA = 1.8×10-31cm6/s. L 14 Oct 08
4
Minority electron lifetimes
Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991 The parameters used in the fit are τo = 30 μs, Nref = 1×1017/cm2, and CA = 8.3×10-32 cm6/s. L 14 Oct 08
5
References for Part A Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003. Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991. D.B.M. Klaassen; “A UNIFIED MOBILITY MODEL FOR DEVICE SIMULATION”, Electron Devices Meeting, Technical Digest., International 9-12 Dec Page(s):357 – 360. David Roulston, Narain D. Arora, and Savvas G. Chamberlain “Modeling and Measurement of Minority-Carrier Lifetime versus Doping in Diffused Layers of n+-p Silicon Diodes”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-29, NO. 2, FEBRUARY 1982, pages M. S. Tyagi and R. Van Overstraeten, “Minority Carrier Recombination in Heavily Doped Silicon”, Solid-State Electr. Vol. 26, pp , Download a copy at Tyagi.pdf. L 14 Oct 08
6
S-R-H rec for deficient min carr
If n < ni and p < pi, then the S-R-H net recomb rate becomes (p < po, n < no): U = R - G = - ni/(2t0cosh[(ET-Efi)/kT]) And with the substitution that the gen lifetime, tg = 2t0cosh[(ET-Efi)/kT], and net gen rate U = R - G = - ni/tg The intrinsic concentration drives the return to equilibrium L 14 Oct 08
7
The Continuity Equation
The chain rule for the total time derivative dn/dt (the net generation rate of electrons) gives L 14 Oct 08
8
The Continuity Equation (cont.)
L 14 Oct 08
9
The Continuity Equation (cont.)
L 14 Oct 08
10
The Continuity Equation (cont.)
L 14 Oct 08
11
The Continuity Equation (cont.)
L 14 Oct 08
12
The Continuity Equation (cont.)
L 14 Oct 08
13
The Continuity Equation (cont.)
L 14 Oct 08
14
Review of depletion approximation
pp << ppo, -xp < x < 0 nn << nno, 0 < x < xn 0 > Ex > -2Vbi/W, in DR (-xp < x < xn) pp=ppo=Na & np=npo= ni2/Na, -xpc< x < -xp nn=nno=Nd & pn=pno= ni2/Nd, xn < x < xnc x xn xnc -xpc -xp Ev Ec qVbi EFi EFn EFp L 14 Oct 9
15
Review of D. A. (cont.) Ex -xpc -xp xn xnc x -Emax L 14 Oct 9
16
Forward Bias Energy Bands
Ev Ec EFi xn xnc -xpc -xp q(Vbi-Va) EFP EFN qVa x Imref, EFn Imref, EFp L 14 Oct 9
17
Law of the junction: “Remember to follow the minority carriers”
L 14 Oct 9
18
Law of the junction (cont.)
L 14 Oct 9
19
Law of the junction (cont.)
L 14 Oct 9
20
Injection Conditions L 14 Oct 9
21
Ideal Junction Theory Assumptions Ex = 0 in the chg neutral reg. (CNR)
MB statistics are applicable Neglect gen/rec in depl reg (DR) Low level injection applies so that dnp < ppo for -xpc < x < -xp, and dpn < nno for xn < x < xnc Steady State conditions L 14 Oct 9
22
Ideal Junction Theory (cont.)
L 14 Oct 9
23
Ideal Junction Theory (cont.)
L 14 Oct 9
24
Ideal Junction Theory (cont.)
L 14 Oct 9
25
Diffusion Length model
L = (Dt)1/2 Diffusion Coeff. is Pierret* model L 14 Oct 9
26
Excess minority carrier distr fctn
L 14 Oct 9
27
Forward Bias Energy Bands
Ev Ec EFi xn xnc -xpc -xp q(Vbi-Va) EFP EFN qVa x Imref, EFn Imref, EFp L 14 Oct 9
28
Carrier Injection ln(carrier conc) ln Na ln Nd ln ni ~Va/Vt ~Va/Vt
ln ni2/Nd ln ni2/Na x -xpc -xp xnc xn L 14 Oct 9
29
Minority carrier currents
L 15 Oct 14
30
Evaluating the diode current
L 15 Oct 14
31
Special cases for the diode current
L 15 Oct 14
32
Ideal diode equation Assumptions: Current dens, Jx = Js expd(Va/Vt)
low-level injection Maxwell Boltzman statistics Depletion approximation Neglect gen/rec effects in DR Steady-state solution only Current dens, Jx = Js expd(Va/Vt) where expd(x) = [exp(x) -1] L 15 Oct 14
33
Ideal diode equation (cont.)
Js = Js,p + Js,n = hole curr + ele curr Js,p = qni2Dp coth(Wn/Lp)/(NdLp) = qni2Dp/(NdWn), Wn << Lp, “short” = qni2Dp/(NdLp), Wn >> Lp, “long” Js,n = qni2Dn coth(Wp/Ln)/(NaLn) = qni2Dn/(NaWp), Wp << Ln, “short” = qni2Dn/(NaLn), Wp >> Ln, “long” Js,n << Js,p when Na >> Nd L 15 Oct 14
34
Diffnt’l, one-sided diode conductance
Static (steady-state) diode I-V characteristic IQ Va VQ L 15 Oct 14
35
Diffnt’l, one-sided diode cond. (cont.)
L 15 Oct 14
36
Charge distr in a (1- sided) short diode
dpn Assume Nd << Na The sinh (see L10) excess minority carrier distribution becomes linear for Wn << Lp dpn(xn)=pn0expd(Va/Vt) Total chg = Q’p = Q’p = qdpn(xn)Wn/2 Wn = xnc- xn dpn(xn) Q’p x xn xnc L 15 Oct 14
37
Charge distr in a 1- sided short diode
dpn Assume Quasi-static charge distributions Q’p = +qdpn(xn,Va)Wn/2 dQ’p =q(W/2) x {dpn(xn,Va+dV) dpn(xn,Va)} Wn = xnc - xn (Va) dpn(xn,Va+dV) dpn(xn,Va) dQ’p Q’p x xn xnc L 15 Oct 14
38
References * Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996 ** Physics of Semiconductor Devices, M. Shur, Wiley. L 14 Oct 9
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.