Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 5. Day 14..

Similar presentations


Presentation on theme: "Unit 5. Day 14.."β€” Presentation transcript:

1 Unit 5. Day 14.

2 Modeling Proportional Relationships
Traditional Alternate

3 Official Math Standard 7.RP.2.c
Represent proportional relationships by equations.Β For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. $ β„Žπ‘Žπ‘‘ $ β„Žπ‘Žπ‘‘ 6 24 Γ·4 Four hats cost $24. 4 Γ·4 𝑐 𝑑 = 6 𝑛 βˆ™ β„Ž π‘₯:β„Žπ‘Žπ‘‘π‘  𝑦:π‘π‘œπ‘ π‘‘ 𝑦 = 6π‘₯

4 Official Math Standard 7.RP.2.c
Represent proportional relationships by equations.Β For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. Six sodas cost $9. 9 6 3 2 $ π‘ π‘œπ‘‘π‘Ž 9 $ π‘ π‘œπ‘‘π‘Ž $ π‘ π‘œπ‘‘π‘Ž 9 $ π‘ π‘œπ‘‘π‘Ž 1.50 Γ·6 Γ·6 6 6 Γ·6 Γ·6 π‘₯:π‘ π‘œπ‘‘π‘Žπ‘  𝑦:π‘π‘œπ‘ π‘‘ 3 2 𝑑 𝑐 𝑦 = π‘₯ 𝑛 βˆ™ 𝑠 𝑐 𝑦 𝑑 = 1.5 βˆ™ π‘₯ 𝑛 𝑠

5 Official Math Standard 7.RP.2.c
Represent proportional relationships by equations.Β For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. 12 miles in 5 hours 12 5 12 π‘šπ‘– β„Žπ‘Ÿ π‘šπ‘– 1 β„Žπ‘Ÿ π‘šπ‘– β„Žπ‘Ÿ 2.4 12 π‘šπ‘– 1 β„Žπ‘Ÿ Γ·5 Γ·5 5 5 Γ·5 Γ·5 π‘₯:π‘‘π‘–π‘šπ‘’ (β„Žπ‘Ÿπ‘ ) 𝑦:π‘šπ‘–π‘™π‘’π‘  12 5 𝑦 𝑑 = βˆ™ π‘₯ 𝑑 𝑦 𝑑 = 2.4 βˆ™ π‘₯ 𝑑

6 Official Math Standard 7.RP.2.c
Represent proportional relationships by equations.Β For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. 4 pizzas were ordered to feed 10 teens 4 10 2 5 π‘π‘–π‘§π‘§π‘Ž 𝑑𝑒𝑒𝑛 4 π‘π‘–π‘§π‘§π‘Ž 1 𝑑𝑒𝑒𝑛 π‘π‘–π‘§π‘§π‘Ž 𝑑𝑒𝑒𝑛 4 0.4 π‘π‘–π‘§π‘§π‘Ž 1 𝑑𝑒𝑒𝑛 Γ·10 Γ·10 10 10 Γ·10 Γ·10 π‘₯:𝑑𝑒𝑒𝑛𝑠 𝑦:π‘π‘–π‘§π‘§π‘Ž 2 5 𝑝 = βˆ™ 𝑑 𝑝 𝑦 = 0.4 βˆ™ 𝑦 π‘₯ π‘₯ 𝑑

7 𝑦 = π‘Ÿ π‘₯ 𝑦 = 6π‘₯ 𝑐 = 6β„Ž 𝑑 = 6𝑛 𝑐 = 3 2 𝑠 𝑦 = 3 2 π‘₯ 𝑑 = 3 2 𝑛 𝑑 = 12 5 𝑑
$ 6 1 β„Žπ‘Žπ‘‘ 𝑦 = 6π‘₯ 𝑐 = 6β„Ž 𝑑 = 6𝑛 $ π‘ π‘œπ‘‘π‘Ž 𝑐 = 3 2 𝑠 𝑦 = 3 2 π‘₯ 𝑑 = 3 2 𝑛 𝑦 = π‘Ÿ π‘₯ Wait a minute! 12 5 π‘šπ‘– 1 β„Žπ‘Ÿ 𝑑 = 𝑑 𝑦 = π‘₯ 2 5 π‘π‘–π‘§π‘§π‘Ž 1 𝑑𝑒𝑒𝑛 𝑝 = 2 5 𝑑 𝑦 = 2 5 π‘₯

8 Four hats cost $24. 24 4 = 𝑦 π‘₯ 𝑑=6β„Ž π‘₯:β„Žπ‘Žπ‘‘π‘  𝑦:π‘π‘œπ‘ π‘‘ 24 𝑦 4 π‘₯
Example A: Please model with an equation. Four hats cost $24. $ β„Žπ‘Žπ‘‘ = $ β„Žπ‘Žπ‘‘ 24 𝑦 4 π‘₯ 24 4 = 𝑦 π‘₯ 4 𝑦 = 24 π‘₯ 𝑑=6β„Ž 4𝑦 = 24π‘₯ 4 4 π‘₯:β„Žπ‘Žπ‘‘π‘  𝑦:π‘π‘œπ‘ π‘‘ 𝑦 = 6π‘₯

9 Six sodas cost $9. 9 6 = 𝑦 π‘₯ 𝑑= 3 2 𝑠 π‘₯:π‘ π‘œπ‘‘π‘Ž 𝑦:π‘π‘œπ‘ π‘‘ 9 𝑦 6 π‘₯
Example B: Please model with an equation. Six sodas cost $9. $ π‘ π‘œπ‘‘π‘Ž = $ π‘ π‘œπ‘‘π‘Ž 9 𝑦 6 π‘₯ 9 6 = 𝑦 π‘₯ 6 𝑦 = 9 π‘₯ 𝑑= 3 2 𝑠 6𝑦 = 9π‘₯ 6 6 π‘₯:π‘ π‘œπ‘‘π‘Ž 𝑦:π‘π‘œπ‘ π‘‘ 9 6 π‘₯ 3 2 π‘₯ 𝑦 =

10 12 miles in 5 hours 12 5 = 𝑦 π‘₯ 𝑑= 12 5 𝑑 π‘₯:π‘‘π‘–π‘šπ‘’ (β„Žπ‘Ÿπ‘ ) 𝑦:π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ (π‘šπ‘–)
Example C: Please model with an equation. 12 miles in 5 hours 12 𝑦 π‘šπ‘– β„Žπ‘Ÿ = π‘šπ‘– β„Žπ‘Ÿ 5 π‘₯ = 𝑦 π‘₯ 5 𝑦 = 12 π‘₯ 𝑑= 12 5 𝑑 5𝑦 = 12π‘₯ 5 5 π‘₯:π‘‘π‘–π‘šπ‘’ (β„Žπ‘Ÿπ‘ ) 𝑦:π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ (π‘šπ‘–) 12 5 π‘₯ 𝑦 =

11 4 pizzas were ordered to feed 10 teens
Example D: Please model with an equation. 4 pizzas were ordered to feed 10 teens π‘π‘–π‘§π‘§π‘Ž 𝑑𝑒𝑒𝑛 = π‘π‘–π‘§π‘§π‘Ž 𝑑𝑒𝑒𝑛 4 𝑦 10 π‘₯ = 𝑦 π‘₯ 10 𝑦 = 4 π‘₯ 𝑝= 2 5 𝑑 10𝑦 = 4π‘₯ 10 10 π‘₯:𝑑𝑒𝑒𝑛𝑠 𝑦:π‘π‘–π‘§π‘§π‘Ž 2 5 π‘₯ 4 10 π‘₯ 𝑦 =

12 If we have a proportional relationship
And we want to represent it with an equation (model) We have two options to create our equation. Find Unit Rate Cross Multiply

13 𝑦= π‘₯ π‘Ÿ 16 cups of flour are needed to produce 6 cakes 6 16 = 𝑦 π‘₯
Example E: 16 cups of flour are needed to produce 6 cakes Find Unit Rate Cross Multiply 6 π‘π‘Žπ‘˜π‘’ π‘“π‘™π‘œπ‘’π‘Ÿ = π‘π‘Žπ‘˜π‘’ π‘“π‘™π‘œπ‘’π‘Ÿ 𝑦 16 π‘₯ 6 16 3 8 6 π‘π‘Žπ‘˜π‘’ π‘“π‘™π‘œπ‘’π‘Ÿ Γ·16 π‘π‘Žπ‘˜π‘’ 1 π‘“π‘™π‘œπ‘’π‘Ÿ = 𝑦 π‘₯ 16 Γ·16 16 𝑦 = 6 π‘₯ 3 8 𝑦= π‘₯ π‘Ÿ 16𝑦 = 6π‘₯ 16 16 π‘₯:π‘“π‘™π‘œπ‘’π‘Ÿ 𝑦:π‘π‘Žπ‘˜π‘’π‘  𝑐= 3 8 𝑓 6 16 π‘₯ 3 8 π‘₯ 𝑦 =

14 𝑦= π‘₯ π‘Ÿ A car uses 1 1 2 gallons to travel 45 miles. 𝑑=30𝑔 π‘₯:π‘”π‘Žπ‘™π‘™π‘œπ‘›π‘ 
Example F: Find Unit Rate Cross Multiply 45 π‘šπ‘– π‘”π‘Žπ‘™ = π‘šπ‘– π‘”π‘Žπ‘™ 𝑦 3 2 π‘₯ Γ· 3 2 90 3 30 45 π‘šπ‘– π‘”π‘Žπ‘™ π‘šπ‘– 1 π‘”π‘Žπ‘™ = 𝑦 π‘₯ 1 1 2 3 2 Γ· 3 2 3 2 𝑦 = 45 π‘₯ 3 2 𝑦 𝑦= π‘₯ π‘Ÿ = 45π‘₯ 30 3 2 3 2 𝑑=30𝑔 π‘₯:π‘”π‘Žπ‘™π‘™π‘œπ‘›π‘  𝑦:π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ (π‘šπ‘–) 90 3 π‘₯ 𝑦 = 30π‘₯


Download ppt "Unit 5. Day 14.."

Similar presentations


Ads by Google