Download presentation
Presentation is loading. Please wait.
1
Comparison of Wavelet and FFT Based Single Channel Speech Signal Noise Reduction Techniques
Ningping Fan, Radu Balan, Justinian Rosca Siemens Corporate Research Inc. SPIE Optics East 2004
2
Shot Time Discrete Fourier Transform in Frequency Presentation
k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 x(m, i) x(m, i) k = 7 m = 0, 1, 2, 3, 4, 5, 6, 7 X(k, i) DFT IDFT Siemens Corporate Research
3
Shot Time Discrete Wavelet Transform in Time-Frequency Presentation
2 h g ~ DWT IDWT x(m, i) X(k, j) Level 1 Level 2 Level 3 k = 0 j = i k = 1 k = 2 j = i, i + 1 k = 3 j = i, i + 1, i + 2, i + 3 m = 0, 1, 2, 3, 4, 5, 6, 7 Siemens Corporate Research
4
Shot Time Discrete Wavelet Transform in Pseudo Frequency Presentation
2 h g ~ DWT IDWT x(m,i) X(k,i) Level 1 Level 2 Level 3 k = 0 k = 1 k = 2, 3 k = 4, 5, 6, 7 m = 0, 1, 2, 3, 4, 5, 6, 7 Siemens Corporate Research
5
Shot Time Discrete Wavelet Packet Transform in Frequency Presentation
2 h g ~ DWPT IDWPT x(m, i) X(k, i) Level 1 Level 2 Level 3 m = 0, 1, 2, 3, 4, 5, 6, 7 k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 Siemens Corporate Research
6
Power Spectral Densities of Noise, Speech, and Noisy Speech
(a) Psd of DFT (b) Psd of DWT in pseudo spectral presentation (c) Psd of DWPT Siemens Corporate Research
7
The Workflow of Single Channel Noise Reduction Operation
Siemens Corporate Research
8
Martin Noise Estimator - Noise Magnitude Tracking in Periodograms of STFT and DWT
Siemens Corporate Research
9
The Wiener Filter Siemens Corporate Research
10
The Spectral Subtraction Filter
Siemens Corporate Research
11
The Wolfe-Godsill Filter - MAP Estimation of Amplitude and Phase
Siemens Corporate Research
12
The Ephraim-Malah Filter - MMS Estimation of Amplitude
Siemens Corporate Research
13
The transfer functions of the Wiener, Spectral Subtraction, Wolfe-Godsill, and Ephraim-Malah Filters
Siemens Corporate Research
14
Experiments 4 Speeches (male/female, conference/handset), 7 noises (background, fan, window, printer, etc.) are mixed in 4 ratios (28 per mixing ratio), Hz, 16 bits STFT setting x(m, I) sample with 40 overlap, and 56 zero padding X(k, I) FFT DWPT and DWT setting x(m, I) samples with 96 overlap X(k, I) - 8 levels Battle-Lemarie (0), Burt-Adelson (1), Coiflet-6 (2), Daubechies-20 (3), Haar (4), Pseudo-coiflet-4 (5), and Spline-3-7 (6) Objective Quality Measurements Enhancement: global SNR (gSNR), segmental SNR (sSNR), frequency-weighted segmental SNR (fwsSNR) Distortion: Itakura-Saito distance (isD), and weighted spectral slope (WSS) Siemens Corporate Research
15
Experimental Results for Spectral Subtraction
qm gSNR (dB) sSNR (dB) fwsSNR (dB) isD WSS org -0.1 2.31 5.9 10.31 -3.12 -0.71 2.95 7.44 1.51 4.85 9.64 15.18 0.46 0.32 0.2 0.12 43.3 34 24.56 16.03 spectral subtraction fft 1.44 4.63 7.96 11.01 -0.7 2.16 5.24 8.2 3.9 6.75 9.63 12.4 0.41 0.29 0.13 41.64 32.31 23.63 15.96 wp0 1.03 4.05 6.61 9.52 -1.51 1.37 6.93 3.12 6.83 8.04 10.62 0.47 0.25 0.14 41.56 32.46 24.61 16.68 wp1 0.84 3.79 7.64 11.29 -1.76 1.04 4.78 8.3 2.83 6.43 10.25 13.39 0.51 0.34 0.11 42.39 33.27 23.65 15.84 wp2 1.01 4 7.68 11.54 -1.54 1.31 4.91 8.63 3.09 6.77 11.18 15 0.48 0.19 41.67 32.63 23.81 15.91 wp3 1.02 4.04 6.29 9.25 -1.5 1.36 3.56 6.69 6.82 7.91 10.6 0.27 0.15 41.42 32.44 25.53 17.43 wp4 3.77 7.35 -1.8 4.46 8.03 2.79 6.38 9.89 13.06 0.56 0.37 0.21 42.4 33.43 24.28 16.29 wp5 0.96 3.93 7.43 11.31 -1.6 1.22 4.62 8.39 3 10.82 14.7 0.49 0.33 41.51 32.59 24.3 16.24 wp6 0.94 6.56 9.47 -1.71 1.13 3.85 6.88 2.86 6.63 10.61 0.31 42.22 33.05 24.75 16.76 wt0 0.81 3.71 7.23 10.86 -1.82 4.37 2.74 6.28 9.76 12.89 0.5 42.35 33.41 24.38 16.3 wt1 0.67 3.51 7.05 10.74 -2 0.74 4.18 7.78 2.55 6.06 12.83 0.52 0.35 0.22 42.44 33.57 24.58 16.49 wt2 0.78 3.66 7.19 10.85 -1.87 0.91 4.34 7.9 2.72 9.8 12.93 42.32 33.37 wt3 0.79 7.27 10.93 -1.84 0.97 4.41 7.98 2.76 6.37 9.88 13.04 33.4 24.35 wt4 0.65 7.06 10.76 -2.02 4.19 7.79 2.51 6.02 9.66 12.88 0.57 0.23 42.68 33.75 24.72 16.61 wt5 3.65 7.12 10.72 -1.83 4.28 2.73 9.75 12.84 42.21 24.51 16.51 wt6 0.61 3.39 6.92 -2.11 7.65 2.34 5.82 9.44 12.61 42.95 34.04 25.05 16.93 The best The second Siemens Corporate Research
16
Experimental Results for Wiener Filter
qm gSNR (dB) sSNR (dB) fwsSNR (dB) isD WSS org -0.1 2.31 5.9 10.31 -3.12 -0.71 2.95 7.44 1.51 4.85 9.64 15.18 0.46 0.32 0.2 0.12 43.3 34 24.56 16.03 Wiener filter fft 1.6 4.78 8.17 11.47 -0.35 2.47 5.55 8.69 4.12 7.17 10.41 13.74 0.43 0.3 0.13 42.03 32.82 24.03 16.19 wp0 1.09 4.09 7.59 11.24 -1.37 1.47 4.73 8.25 3.17 6.98 10.19 13.32 0.47 0.31 42.27 32.84 23.76 15.89 wp1 0.9 3.84 7.64 11.49 -1.62 1.17 4.86 8.59 2.87 6.62 11.14 14.98 0.52 0.33 0.19 0.11 42.81 33.45 23.88 15.94 wp2 1.07 4.04 6.58 9.47 -1.4 1.42 3.88 6.89 3.14 6.93 8.03 10.58 0.48 0.25 0.14 42.25 32.93 24.55 16.63 wp3 1.08 4.07 7.62 11.25 -1.36 4.77 8.27 3.18 7 10.21 13.31 32.78 23.61 15.81 wp4 3.83 7.67 11.52 -1.66 1.13 4.9 8.61 2.83 6.55 11.18 0.57 0.37 33.61 23.75 15.87 wp5 1.02 3.96 6.33 9.28 -1.46 1.32 3.58 6.69 3.05 6.82 8.12 10.78 0.18 41.96 32.83 25.96 17.9 wp6 0.98 3.9 7.31 10.94 -1.59 1.2 4.42 7.96 2.88 6.66 9.91 13.05 0.45 0.22 42.49 33.1 24.48 16.5 wt0 0.87 3.76 7.32 11.16 1.1 4.54 2.8 6.44 10.61 14.43 0.5 42.22 33.36 24.31 16.24 wt1 0.73 7.15 11.06 -1.84 0.89 4.36 8.16 2.6 6.21 10.44 14.33 0.54 0.35 0.21 42.34 33.51 24.5 16.4 wt2 0.84 3.73 7.28 11.15 -1.69 4.51 2.78 6.46 10.67 14.51 0.51 42.15 33.29 16.23 wt3 0.86 3.79 7.36 11.23 -1.65 1.14 4.6 8.36 2.84 6.57 10.77 14.63 33.34 24.26 16.16 wt4 3.61 7.18 11.07 -1.85 0.92 4.38 2.57 6.19 10.4 14.3 0.6 0.38 42.67 33.77 24.67 16.53 wt5 0.85 3.69 7.19 11.02 -1.68 1.05 4.44 8.15 2.79 14.42 0.34 42.05 33.38 16.45 Wt6 0.59 3.37 6.96 10.88 -2.04 0.67 4.17 7.99 2.27 5.82 10.16 14.1 42.96 34.05 25.02 16.82 The best The second Siemens Corporate Research
17
Experimental Results for Wolfe-Godsill Filter
qm gSNR (dB) sSNR (dB) fwsSNR (dB) isD WSS org -0.1 2.31 5.9 10.31 -3.12 -0.71 2.95 7.44 1.51 4.85 9.64 15.18 0.46 0.32 0.2 0.12 43.3 34 24.56 16.03 Wolfe-Godsill fft 1.5 4.67 7.8 10.66 -0.48 5.18 7.96 3.78 6.31 9.07 11.86 0.44 0.23 0.15 42.22 32.98 24.39 16.62 wp0 0.79 3.55 7.39 11.23 -1.69 0.9 4.58 8.31 2.77 5.35 10.74 14.59 0.59 0.41 0.21 41.61 33.2 24.49 16.45 wp1 3.24 6.47 9.3 -2.01 0.52 3.73 6.7 2.49 5.1 7.92 10.43 0.65 0.25 43 34.4 24.98 17.23 wp2 0.77 3.51 7.49 11.11 -1.74 0.83 4.63 8.13 2.73 5.32 10.14 13.24 41.91 33.47 23.85 16.07 wp3 7.52 11.35 -1.7 0.89 4.74 8.45 2.78 11.04 14.85 0.11 41.6 23.95 16.09 wp4 3.3 6.57 9.59 -2.02 0.53 3.71 6.83 2.56 5.25 8.06 0.74 0.51 0.13 42.9 34.71 25.59 17.71 wp5 0.72 3.45 11.21 -1.82 4.59 8.2 2.63 5.23 10.25 13.42 0.6 41.76 33.5 24.12 16.21 wp6 0.78 3.46 7.5 11.41 -1.9 0.63 4.69 8.49 2.51 5.24 11.05 14.95 0.36 0.19 43.36 34.51 24.1 16.16 wt0 0.58 3.17 6.16 -2.13 6.59 5.13 7.94 10.59 0.61 0.43 0.26 43.1 34.21 25.27 17.13 wt1 0.45 2.98 6.02 9.04 -2.29 3.31 6.55 2.39 5.06 8.03 10.82 0.64 0.27 0.16 43.22 34.42 25.53 17.48 wt2 0.56 3.15 6.15 9.1 -2.16 0.38 6.61 2.52 5.17 8.01 10.68 43.04 34.11 25.2 17.1 wt3 0.54 6.21 9.18 -2.17 6.67 8.04 0.62 43.11 34.17 25.23 17.02 wt4 3 6.09 9.16 -2.33 3.37 6.63 2.38 8.26 11.1 0.5 0.31 0.18 43.44 34.87 25.96 17.79 wt5 0.57 3.11 6 8.79 -2.12 0.37 3.34 6.34 5.11 7.84 10.41 42.99 34.27 25.51 17.65 wt6 0.47 2.91 5.91 8.94 -2.26 3.21 6.43 2.36 5.03 7.98 10.7 0.39 0.14 43.64 34.85 26.12 18.07 The best The second Siemens Corporate Research
18
CPU Time Consumption for FFT, DWPT, and DWT
Abr. transforms Implementation CPU Time (time of STFT) fft Shot time Fourier transform Custom implementation of FFT 1 wp0 Battle-Lemarie wavelet packet UBC Imager Wavelet Package 10.304 wp1 Burt-Adelson wavelet packet 3.016 wp2 Coiflet-6 wavelet packet 7.779 wp3 Daubechies-D20 wavelet packet 8.608 wp4 Haar wavelet packet 0.949 wp5 Pseudo-coiflet-4 wavelet packet 4.745 wp6 Spline-3-7 wavelet packet 4.356 wt0 Battle-Lemarie wavelet transform 2.458 wt1 Burt-Adelson wavelet transform 0.882 wt2 Coiflet-6 wavelet transform 1.898 wt3 Daubechies-D20 wavelet transform UBC Imager Wavelet Package 2.084 wt4 Haar wavelet transform 0.390 wt5 Pseudo-coiflet-4 wavelet transform 1.255 wt6 Spline-3-7 wavelet transform 1.153 wt7 Custom implementation 0.067 wt8 Daubechies-D4 wavelet transform 0.085 Siemens Corporate Research
19
Conclusion All methods can reduce noise in SNR sense, and more specifically STFT is the best, DWPT the second, and DWT the last STFT and DWPT can reduce distortion DWPT has less distortion and is better with high SNR signals Further research Try other incomplete transforms of DWPT and DWT Adapt Martin noise estimator for each frequency due to different sample length Test other wavelet bases Siemens Corporate Research
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.