Download presentation
Presentation is loading. Please wait.
1
Date: DO NOW QUESTION Name a living thing.
What are at least 3 reasons you think it is “living”? Video? EST. 45 mins © 2012 Pearson Education, Inc. 1
2
Objective Students will be able to (SWBAT) determine how life is organized.
3
Biology is… What is biology? Biology is the scientific study of life.
Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. The seven characteristics of life described in Module 1.1 can easily become another list to memorize. Exercises that require reflection and analysis of these significant traits can help to make this list more meaningful. Consider challenging your students to identify each property in the life of a butterfly or other common form of life (or perhaps a school mascot, if appropriate). 2. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 3. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 3
4
What are the properties of life?
What does it mean to be “alive?” Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. The seven characteristics of life described in Module 1.1 can easily become another list to memorize. Exercises that require reflection and analysis of these significant traits can help to make this list more meaningful. Consider challenging your students to identify each property in the life of a butterfly or other common form of life (or perhaps a school mascot, if appropriate). 2. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 3. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 4
5
7 properties of life include…
Order— the highly ordered structure that typifies life. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. The seven characteristics of life described in Module 1.1 can easily become another list to memorize. Exercises that require reflection and analysis of these significant traits can help to make this list more meaningful. Consider challenging your students to identify each property in the life of a butterfly or other common form of life (or perhaps a school mascot, if appropriate). 2. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 3. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 5
6
7 properties of life include…
2. Reproduction—the ability of organisms to reproduce their own kind. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. The seven characteristics of life described in Module 1.1 can easily become another list to memorize. Exercises that require reflection and analysis of these significant traits can help to make this list more meaningful. Consider challenging your students to identify each property in the life of a butterfly or other common form of life (or perhaps a school mascot, if appropriate). 2. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 3. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 6
7
7 properties of life include…
3. Growth and development—consistent growth and development controlled by inherited DNA. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. The seven characteristics of life described in Module 1.1 can easily become another list to memorize. Exercises that require reflection and analysis of these significant traits can help to make this list more meaningful. Consider challenging your students to identify each property in the life of a butterfly or other common form of life (or perhaps a school mascot, if appropriate). 2. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 3. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 7
8
7 properties of life include…
4. Energy processing—the use of chemical energy to power an organism’s activities and chemical reactions. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. The seven characteristics of life described in Module 1.1 can easily become another list to memorize. Exercises that require reflection and analysis of these significant traits can help to make this list more meaningful. Consider challenging your students to identify each property in the life of a butterfly or other common form of life (or perhaps a school mascot, if appropriate). 2. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 3. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 8
9
Figure 1.1_4 Some important properties of life (part 4)
Energy processing 9
10
7 properties of life include…
Response to the environment—an ability to respond to environmental stimuli. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. The seven characteristics of life described in Module 1.1 can easily become another list to memorize. Exercises that require reflection and analysis of these significant traits can help to make this list more meaningful. Consider challenging your students to identify each property in the life of a butterfly or other common form of life (or perhaps a school mascot, if appropriate). 2. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 3. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 10
11
Response to the environment
Figure 1.1_5 Figure 1.1_5 Some important properties of life (part 5) Response to the environment 11
12
Response to the environment
Figure 1.1_5 Some important properties of life (part 5) Response to the environment 12
13
7 properties of life include…
6. Regulation—an ability to control an organism’s internal environment within limits that sustain life. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. The seven characteristics of life described in Module 1.1 can easily become another list to memorize. Exercises that require reflection and analysis of these significant traits can help to make this list more meaningful. Consider challenging your students to identify each property in the life of a butterfly or other common form of life (or perhaps a school mascot, if appropriate). 2. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 3. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 13
14
7 properties of life include…
7. Evolutionary adaptation — individuals with traits best suited to their environments have greater reproductive success and pass their traits on to their offspring. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. The seven characteristics of life described in Module 1.1 can easily become another list to memorize. Exercises that require reflection and analysis of these significant traits can help to make this list more meaningful. Consider challenging your students to identify each property in the life of a butterfly or other common form of life (or perhaps a school mascot, if appropriate). 2. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 3. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to 14
15
Figure 1.1_7 Figure 1.1_7 Some important properties of life (part 7) 15
16
What is a hierarchy? A hierarchy is a system in which people or groups are ranked one above the other for some reason. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 16
17
Biological organization on Earth unfolds as follows:
What is a hierarchy? In life’s hierarchy of organization, new properties emerge at each level. Biological organization on Earth unfolds as follows: Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 17
18
Number largest (1) to smallest (11)
2 mins for Hierachy Organize
19
Biosphere—all of the environments on Earth that support life.
What is a hierarchy? Biosphere—all of the environments on Earth that support life. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 19
20
What is a hierarchy? Ecosystem—the organisms living in a particular area AND the physical components with which the organisms interact. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 20
21
Community—all the organisms living in a particular ecosystem.
What is a hierarchy? Community—all the organisms living in a particular ecosystem. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 21
22
Ecosystem: Forest in Madagascar
Figure 1.2_4 Ecosystem: Forest in Madagascar Figure 1.2_4 Life’s hierarchy of organization (community) Community: All organisms in the forest 22
23
What is a hierarchy? Population—all the individuals of the same species living in a specific area. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 23
24
Life’s hierarchy of organization…
Organism—an individual living thing. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 24
25
Life’s hierarchy of organization…
Organ system—several organs that cooperate in a specific function. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 25
26
Life’s hierarchy of organization…
Organ—a structure that is composed of tissues and that provides a specific function for the organism. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 26
27
Life’s hierarchy of organization…
Tissues—a group of similar cells that perform a specific function. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 27
28
Life’s hierarchy of organization…
Cells—the fundamental unit of life, separated from its environment by a membrane. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 28
29
Life’s hierarchy of organization…
Organelle—a membrane-bound structure that performs a specific function in a cell. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 29
30
Life’s hierarchy of organization…
Molecule—a cluster of small chemical units called “atoms,” held together by chemical bonds. Student Misconceptions and Concerns 1. Many students enter our courses with a limited appreciation of the diversity of life. Ask any group of freshmen at the start of the semester to write down the first type of animal that comes to mind, and the most frequent response is a mammal. As the diversity of life is explored, the common heritage of biological organization can be less, and not more, apparent. The diverse forms, habits, and ecological interactions overwhelm our senses with striking distinctions. Emphasizing the diversity and the unifying aspects of life is necessary for a greater understanding of the rich evolutionary history of life on Earth. 2. We live in a world that is largely understood by what we can distinguish and identify with our naked senses. However, the diversity of life and the levels of biological organization extend well below the scale of our unaided perceptions. For many students, appreciating the diversity of the microscopic world is abstract, nearly on par with an understanding of the workings of atoms and molecules. The ability to examine the microscopic details of the world of our students (the surface of potato chips, the structure of table salt and sugar, the details of a blade of grass) can be an important sensory extension that prepares the mind for greater comprehension of these minute biological details. Teaching Tips 1. For a chance to add a little math to the biological levels of organization, consider calculating the general scale differences between each level of biological organization. For example, are cells generally 5, 10, 50, or 100 times larger in diameter than organelles? Are organelles generally 5, 10, 50, or 100 times larger than macromolecules? For some levels of organization, such as ecosystems, communities, and populations, size/scale differences are perhaps less relevant and more problematic to consider. However, at the smaller levels, the sense of scale might enhance an appreciation for levels of biological organization. 2. The U.S. Census Bureau maintains updated population clocks that estimate the U.S. and world populations on its website at If students have an accurate general idea of the population of the United States, statistics about the number of people affected with a disease or disaster become more significant. For example, the population of the United States is more than 311 million in It is currently estimated that about one million people in the United States are infected with HIV. The number of people infected with HIV is impressive and concerning, but not perhaps as meaningful as realizing that the number of people infected represents about one out of every 311 people in the United States. Although the infected people are not evenly distributed among geographic and ethnic groups, if you apply this generality to the enrollments in your classes, the students might better appreciate the tremendous impact of the infection. 3. Consider asking students to bring to class a page or two of some article about biology that appeared in the media in the last month. Alternatively, you could have each student a Web address of a recent biology-related news event to you. You might even have them relevant articles to you for each of the main topics you address throughout the semester. 4. The scientific organization Sigma Xi offers a free summary of the major science news articles appearing each weekday in major U.S. news media. The first paragraph or so of each article is included in the with a hyperlink to the rest of the article. The diverse topics are an excellent way to learn of general scientific announcements and reports. Typically, 5–10 articles are cited in each . To sign up for this free service, go to © 2012 Pearson Education, Inc. 30
31
Themes of Biology! Organisms interact with their environment.
Cells are the basic units of life. Life is based on heredity through DNA. Structure & function determine organization. . © 2012 Pearson Education, Inc. 31
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.