Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm-Up Which congruence shortcut, if any,

Similar presentations


Presentation on theme: "Warm-Up Which congruence shortcut, if any,"β€” Presentation transcript:

1 Warm-Up 2. 1. 3. 4. Which congruence shortcut, if any,
Supplies Needed: Giant Whiteboard, Marker, Eraser Warm-Up Which congruence shortcut, if any, can be used to prove the triangles congruent? 1. 2. None SSS 3. 4. HL none

2 Bellringer Complete Warm up!

3 Check Homework

4 A B C D E Prove: βˆ†π΄π΅πΆβ‰…βˆ†πΈπ·πΆ Which one do you want to see first? Paragraph proof Two-column proof Flow-chart proof

5 Paragraph Proof Just write, using complete sentences, a logical argument that proves what you want to prove. For everything you state, you must say how you know it.

6 Paragraph Proof E B Prove: βˆ†π΄π΅πΆβ‰…βˆ†πΈπ·πΆ C
D E Prove: βˆ†π΄π΅πΆβ‰…βˆ†πΈπ·πΆ We know 𝑨𝑩 β‰… 𝑬𝑫 because it is given. We also know that βˆ π‘¨β‰…βˆ π‘¬ because it is given. In addition, βˆ π‘©π‘ͺπ‘¨β‰…βˆ π‘«π‘ͺ𝑬 because they are vertical angles. Thus, βˆ†π‘¨π‘©π‘ͺβ‰…βˆ†π‘¬π‘«π‘ͺ by AAS.

7 Two-Column Proof Organizes your proof into columns. One column is for your statements, and the other one is for your reasons. The last statement will always be the one you are trying to prove.

8 Two-Column Proof A B C D E Prove: βˆ†π΄π΅πΆβ‰…βˆ†πΈπ·πΆ Statement 1) ___________
2) ___________ 3) ___________ 4) ___________ Reason A S βˆ π‘¨β‰…βˆ π‘¬ Given βˆ π‘©π‘ͺπ‘¨β‰…βˆ π‘«π‘ͺ𝑬 Vertical Angles Thm. 𝑨𝑩 β‰… 𝑬𝑫 Given βˆ†π΄π΅πΆβ‰…βˆ†πΈπ·πΆ AAS

9 Flow Chart Proof A visual depiction of your proof. Each β€œbubble” will have a statement and a reason in it. You draw arrows to show which statements lead to which other statements.

10 Flow-Chart Proof AAS E B Prove: βˆ†π΄π΅πΆβ‰…βˆ†πΈπ·πΆ C D A βˆ†π΄π΅πΆβ‰…βˆ†πΈπ·πΆ Given: βˆ π‘¨β‰…βˆ π‘¬
Vertical Angles Thm: βˆ π‘©π‘ͺπ‘¨β‰…βˆ π‘«π‘ͺ𝑬 AAS βˆ†π΄π΅πΆβ‰…βˆ†πΈπ·πΆ Given: 𝑨𝑩 β‰… 𝑬𝑫

11 Given: K is the midpoint of 𝐽𝐿 . Prove: βˆ†π½πΎπ‘€β‰…βˆ†πΏπΎπ‘€
J K L M

12 Two-Column Proof M Given: K is the midpoint of 𝐽𝐿 . Prove: βˆ†π½πΎπ‘€β‰…βˆ†πΏπΎπ‘€ L
J K L M Two-Column Proof Given: K is the midpoint of 𝐽𝐿 . Prove: βˆ†π½πΎπ‘€β‰…βˆ†πΏπΎπ‘€ Reason 1) ___________ 2) ___________ 3) ___________ 4) ___________ 5) ___________ Statement 𝑴𝑲 β‰… 𝑴𝑲 Reflexive Property Given βˆ π‘±π‘²π‘΄β‰…βˆ π‘³π‘²π‘΄ K is the midpoint of 𝐽𝐿 Given 𝑱𝑲 β‰… 𝑳𝑲 Definition of midpoint βˆ†π½πΎπ‘€β‰…βˆ†πΏπΎπ‘€ SAS

13 Flow-Chart Proof SAS M Given: K is the midpoint of 𝐽𝐿 .
J K L M Given: K is the midpoint of 𝐽𝐿 . Prove: βˆ†π½πΎπ‘€β‰…βˆ†πΏπΎπ‘€ Reflexive Prop. 𝑲𝑴 β‰… 𝑲𝑴 SAS βˆ†π½πΎπ‘€β‰…βˆ†πΏπΎπ‘€ Given: βˆ π‘±π‘²π‘΄β‰…βˆ π‘³π‘²π‘΄ Given: K is the midpoint of 𝐽𝐿 Def. of midpoint: 𝑱𝑲 β‰… 𝑳𝑲

14 P Given: 𝑸𝑹 bisects βˆ π‘·π‘Έπ‘Ί. Prove: βˆ†π‘·π‘Έπ‘Ήβ‰…βˆ†π‘Ίπ‘Έπ‘Ή Q R S

15 Prove: βˆ†π‘Ύπ‘Ώπ’€β‰…βˆ†π’€π’π‘Ύ X W Y Z

16 B E Given: 𝐴𝐡 βˆ₯ 𝐷𝐸 Prove: βˆ†π‘¨π‘©π‘ͺβ‰…βˆ†π‘¬π‘«π‘ͺ C A D

17 Write a flowchart proof!
Given: JL bisects KLM Prove: JKL  JML

18

19 Write a Two-Column Proof
Given: C is the midpoint of BD and AE. Prove: βˆ†ABC  βˆ†EDC

20 4. SAS 4. ABC  EDC 3. Vert. s Thm. 3. ACB  ECD 2. Def. of mdpt.
2. AC  EC; BC  DC 1. Given 1. C is mdpt. of BD and AE Reasons Statements

21 Write a Two-Column Proof!
Given: BC || AD, BC  AD Prove: βˆ†ABD  βˆ†CDB Statements Reasons 1. Given 1. BC  AD 2. BC || AD 2. Given 3. CBD  ABD 3. Alt. Int. s Thm. 4. BD  BD 4. Reflex. Prop. of  5. βˆ†ABD  βˆ† CDB 5. SAS

22 Write a Two-Column Proof
Given: QP bisects RQS. QR  QS Prove: βˆ†RQP  βˆ†SQP Statements Reasons 1. QR  QS 1. Given 2. QP bisects RQS 2. Given 3. RQP  SQP 3. Def. of angle bisector 4. QP  QP 4. Reflex. Prop. of  5. βˆ†RQP  βˆ†SQP 5. SAS

23 CPCTC is an abbreviation for the phrase β€œCorresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof after you have proven two triangles congruent.

24 SSS, SAS, ASA, AAS, and HL use corresponding parts to prove triangles congruent. CPCTC uses congruent triangles to prove corresponding parts congruent. Remember!

25 Write a Flowchart Proof!
Given: YW bisects XZ, XY  ZY. Prove: XYW  ZYW Z

26 WY ZW Z

27 Write a Two Column Proof!
Prove: NMO  POM Given: NO || MP, N  P

28 Statements Reasons 1. N  P 1. Given 2. Given 2. NO || MP 3. NOM  PMO 3. Alt. Int. s Thm. 4. Reflex. Prop. of  4. MO  MO 5. AAS 5. βˆ†MNO  βˆ†OPM 6. NMO  POM 6. CPCTC

29 Write a Two Column Proof!
Prove: Given: J is the midpoint of KM and NL. LKJ  NMJ

30 Statements Reasons 1. Given 1. J is the midpoint of KM and NL. 2. KJ  MJ, NJ  LJ 2. Def. of mdpt. 3. KJL  MJN 3. Vert. s Thm. 4. βˆ†KJL  βˆ†MJN 4. SAS 5. LKJ  NMJ 5. CPCTC

31 Given: D(–5, –5), E(–3, –1), F(–2, –3), G(–2, 1), H(0, 5), and I(1, 3)
Using CPCTC In the Coordinate Plane Given: D(–5, –5), E(–3, –1), F(–2, –3), G(–2, 1), H(0, 5), and I(1, 3) Prove: DEF  GHI

32 Use the Distance Formula to find the lengths of the sides of each triangle.
Determine that βˆ†DEF  βˆ†GHI by SSS. DEF  GHI by CPCTC.

33 Given: J(–1, –2), K(2, –1), L(–2, 0), R(2, 3), S(5, 2), T(1, 1)
Using CPCTC In the Coordinate Plane Given: J(–1, –2), K(2, –1), L(–2, 0), R(2, 3), S(5, 2), T(1, 1) Prove: JKL  RST

34 Use the Distance Formula to find the lengths of the sides of each triangle.
Determine that βˆ†JKL  βˆ†RST by SSS. JKL  RST by CPCTC.

35 Proofs Worksheet


Download ppt "Warm-Up Which congruence shortcut, if any,"

Similar presentations


Ads by Google