Download presentation
Presentation is loading. Please wait.
1
Warm-Up 2. 1. 3. 4. Which congruence shortcut, if any,
Supplies Needed: Giant Whiteboard, Marker, Eraser Warm-Up Which congruence shortcut, if any, can be used to prove the triangles congruent? 1. 2. None SSS 3. 4. HL none
2
Bellringer Complete Warm up!
3
Check Homework
4
A B C D E Prove: βπ΄π΅πΆβ
βπΈπ·πΆ Which one do you want to see first? Paragraph proof Two-column proof Flow-chart proof
5
Paragraph Proof Just write, using complete sentences, a logical argument that proves what you want to prove. For everything you state, you must say how you know it.
6
Paragraph Proof E B Prove: βπ΄π΅πΆβ
βπΈπ·πΆ C
D E Prove: βπ΄π΅πΆβ
βπΈπ·πΆ We know π¨π© β
π¬π« because it is given. We also know that β π¨β
β π¬ because it is given. In addition, β π©πͺπ¨β
β π«πͺπ¬ because they are vertical angles. Thus, βπ¨π©πͺβ
βπ¬π«πͺ by AAS.
7
Two-Column Proof Organizes your proof into columns. One column is for your statements, and the other one is for your reasons. The last statement will always be the one you are trying to prove.
8
Two-Column Proof A B C D E Prove: βπ΄π΅πΆβ
βπΈπ·πΆ Statement 1) ___________
2) ___________ 3) ___________ 4) ___________ Reason A S β π¨β
β π¬ Given β π©πͺπ¨β
β π«πͺπ¬ Vertical Angles Thm. π¨π© β
π¬π« Given βπ΄π΅πΆβ
βπΈπ·πΆ AAS
9
Flow Chart Proof A visual depiction of your proof. Each βbubbleβ will have a statement and a reason in it. You draw arrows to show which statements lead to which other statements.
10
Flow-Chart Proof AAS E B Prove: βπ΄π΅πΆβ
βπΈπ·πΆ C D A βπ΄π΅πΆβ
βπΈπ·πΆ Given: β π¨β
β π¬
Vertical Angles Thm: β π©πͺπ¨β
β π«πͺπ¬ AAS βπ΄π΅πΆβ
βπΈπ·πΆ Given: π¨π© β
π¬π«
11
Given: K is the midpoint of π½πΏ . Prove: βπ½πΎπβ
βπΏπΎπ
J K L M
12
Two-Column Proof M Given: K is the midpoint of π½πΏ . Prove: βπ½πΎπβ
βπΏπΎπ L
J K L M Two-Column Proof Given: K is the midpoint of π½πΏ . Prove: βπ½πΎπβ
βπΏπΎπ Reason 1) ___________ 2) ___________ 3) ___________ 4) ___________ 5) ___________ Statement π΄π² β
π΄π² Reflexive Property Given β π±π²π΄β
β π³π²π΄ K is the midpoint of π½πΏ Given π±π² β
π³π² Definition of midpoint βπ½πΎπβ
βπΏπΎπ SAS
13
Flow-Chart Proof SAS M Given: K is the midpoint of π½πΏ .
J K L M Given: K is the midpoint of π½πΏ . Prove: βπ½πΎπβ
βπΏπΎπ Reflexive Prop. π²π΄ β
π²π΄ SAS βπ½πΎπβ
βπΏπΎπ Given: β π±π²π΄β
β π³π²π΄ Given: K is the midpoint of π½πΏ Def. of midpoint: π±π² β
π³π²
14
P Given: πΈπΉ bisects β π·πΈπΊ. Prove: βπ·πΈπΉβ
βπΊπΈπΉ Q R S
15
Prove: βπΎπΏπβ
βπππΎ X W Y Z
16
B E Given: π΄π΅ β₯ π·πΈ Prove: βπ¨π©πͺβ
βπ¬π«πͺ C A D
17
Write a flowchart proof!
Given: JL bisects οKLM Prove: οJKL ο οJML
19
Write a Two-Column Proof
Given: C is the midpoint of BD and AE. Prove: βABC ο βEDC
20
4. SAS 4. οABC ο οEDC 3. Vert. οs Thm. 3. οACB ο οECD 2. Def. of mdpt.
2. AC ο EC; BC ο DC 1. Given 1. C is mdpt. of BD and AE Reasons Statements
21
Write a Two-Column Proof!
Given: BC || AD, BC ο AD Prove: βABD ο βCDB Statements Reasons 1. Given 1. BC ο AD 2. BC || AD 2. Given 3. οCBD ο οABD 3. Alt. Int. οs Thm. 4. BD ο BD 4. Reflex. Prop. of ο 5. βABD ο β CDB 5. SAS
22
Write a Two-Column Proof
Given: QP bisects οRQS. QR ο QS Prove: βRQP ο βSQP Statements Reasons 1. QR ο QS 1. Given 2. QP bisects οRQS 2. Given 3. οRQP ο οSQP 3. Def. of angle bisector 4. QP ο QP 4. Reflex. Prop. of ο 5. βRQP ο βSQP 5. SAS
23
CPCTC is an abbreviation for the phrase βCorresponding Parts of Congruent Triangles are Congruent.β It can be used as a justification in a proof after you have proven two triangles congruent.
24
SSS, SAS, ASA, AAS, and HL use corresponding parts to prove triangles congruent. CPCTC uses congruent triangles to prove corresponding parts congruent. Remember!
25
Write a Flowchart Proof!
Given: YW bisects XZ, XY ο ZY. Prove: οXYW ο οZYW Z
26
WY ZW Z
27
Write a Two Column Proof!
Prove: οNMO ο οPOM Given: NO || MP, οN ο οP
28
Statements Reasons 1. οN ο οP 1. Given 2. Given 2. NO || MP 3. οNOM ο οPMO 3. Alt. Int. οs Thm. 4. Reflex. Prop. of ο 4. MO ο MO 5. AAS 5. βMNO ο βOPM 6. οNMO ο οPOM 6. CPCTC
29
Write a Two Column Proof!
Prove: Given: J is the midpoint of KM and NL. οLKJ ο οNMJ
30
Statements Reasons 1. Given 1. J is the midpoint of KM and NL. 2. KJ ο MJ, NJ ο LJ 2. Def. of mdpt. 3. οKJL ο οMJN 3. Vert. οs Thm. 4. βKJL ο βMJN 4. SAS 5. οLKJ ο οNMJ 5. CPCTC
31
Given: D(β5, β5), E(β3, β1), F(β2, β3), G(β2, 1), H(0, 5), and I(1, 3)
Using CPCTC In the Coordinate Plane Given: D(β5, β5), E(β3, β1), F(β2, β3), G(β2, 1), H(0, 5), and I(1, 3) Prove: οDEF ο οGHI
32
Use the Distance Formula to find the lengths of the sides of each triangle.
Determine that βDEF ο βGHI by SSS. οDEF ο οGHI by CPCTC.
33
Given: J(β1, β2), K(2, β1), L(β2, 0), R(2, 3), S(5, 2), T(1, 1)
Using CPCTC In the Coordinate Plane Given: J(β1, β2), K(2, β1), L(β2, 0), R(2, 3), S(5, 2), T(1, 1) Prove: οJKL ο οRST
34
Use the Distance Formula to find the lengths of the sides of each triangle.
Determine that βJKL ο βRST by SSS. οJKL ο οRST by CPCTC.
35
Proofs Worksheet
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.