Presentation is loading. Please wait.

Presentation is loading. Please wait.

Review: Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei Cocco A, Magnano G and Messina M 2007 J. Cosmol. Astropart.

Similar presentations


Presentation on theme: "Review: Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei Cocco A, Magnano G and Messina M 2007 J. Cosmol. Astropart."β€” Presentation transcript:

1 Review: Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei Cocco A, Magnano G and Messina M 2007 J. Cosmol. Astropart. Phys. JCAP06(2007)015 Kim, Hanbeom

2 Introduction (Anti)neutrino capture on beta decaying nuclei (NCB inteaction) Ordinary beta decay Minimum gap of 2 π‘š 𝜈 Able to distinguish beta decay and NCB interaction 𝑀(𝑁) 𝑀(𝑁′) 𝑄 𝛽 𝐸 𝑒 Β± = 𝑄 𝛽 βˆ’ 𝐸 𝜈 NCB 𝐸 𝑒 Β± = 𝑄 𝛽 + 𝐸 𝜈 Ordinary KIMS

3 Introduction Neutrino mass: eV range is still allowed
Oscillation experiment: a lower limit – the order of 0.05 eV Direct measurements in 3H decay: < 2 eV Data from Cosmic Microwave Background anisotropies and Large Scale Structure power spectrum: 0.3 – 2 eV KIMS

4 Introduction The relic (anti)neutrino Number density
𝑛 𝜈 ~50 𝑐 π‘š βˆ’3 per flavor Very small mean kinetic energy Nonrelativistic: 6.5 𝑇 𝜈 2 / π‘š 𝜈 , relativistic: 𝑇 𝜈 𝑇 𝜈 = 𝑇 𝛾 ~1.7βˆ™ 10 βˆ’4 eV Chemical potential πœ‡ 𝑇 𝜈 ≀0.1 Too small to experimentally detect degeneracy due to chemical potential KIMS

5 Neutrino cross section on 𝛽 Β± decaying nuclei
NCB and its corresponding beta decay are essentially the same phenomenon. The same invariant squared amplitude Use beta decay formalism to derive NCB cross section expression Long wavelength limit approximation 𝜌 𝜈 𝑅β‰ͺ1 Holds for 𝐸 𝜈 ≲10 MeV KIMS

6 Neutrino cross section on 𝛽 Β± decaying nuclei
NCB integrated rate πœ† 𝜈 = 𝜎 𝑁𝐢𝐡 𝑣 𝜈 𝑓 𝑝 𝜈 𝑑 3 𝑝 𝜈 2πœ‹ 3 𝑓 𝑝 𝜈 = exp 𝑝 𝜈 𝑇 𝜈 βˆ’1 (the particular case of relic neutrinos) Cross section 𝜎 𝑁𝐢𝐡 𝑣 𝜈 = 𝐺 𝛽 2 πœ‹ 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 Behrens H and BΓΌringW, 1982 Electron Radial Wave Functions and Nuclear Beta Decay Clarendon Oxford. 𝐹 𝐸 : Fermi function, exp πΈβˆ’ 𝐸 𝐹 π‘˜π‘‡ +1 βˆ’1 Energy 𝐸 𝑒 = 𝐸 𝜈 + 𝑄 𝛽 + π‘š 𝑒 = 𝐸 𝜈 + π‘š 𝜈 + π‘Š 0 π‘Š 0 : corresponding beta decay endpoint KIMS

7 Neutrino cross section on 𝛽 Β± decaying nuclei
πœ† 𝜈 = 𝐺 𝛽 2 πœ‹ π‘Š 0 +2 π‘š 𝜈 ∞ 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 𝐸 𝜈 𝑝 𝜈 𝑓 𝑝 𝜈 𝑑 𝐸 𝑒 Nuclear shape factor An angular momentum weighted average of nuclear state transition amplitudes 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝛽 = π‘˜ 𝑒 , π‘˜ 𝜈 ,𝐾 πœ† π‘˜ 𝑒 [ 𝑀 𝐾 2 π‘˜ 𝑒 , π‘˜ 𝜈 + π‘š 𝐾 2 π‘˜ 𝑒 , π‘˜ 𝜈 βˆ’ 2 πœ‡ π‘˜ 𝑒 π‘š 𝑒 𝛾 π‘˜ 𝑒 π‘˜ 𝑒 𝐸 𝑒 𝑀 𝐾 2 ( π‘˜ 𝑒 , π‘˜ 𝜈 ) π‘š 𝐾 2 ( π‘˜ 𝑒 , π‘˜ 𝜈 )] π‘˜: radial wave function (=𝑗+1/2) K: nuclear transition multipolarity: ( π‘˜ 𝑒 βˆ’ π‘˜ 𝜈 ≀𝐾≀ π‘˜ 𝑒 + π‘˜ 𝜈 ) 𝑀 𝐾 2 , π‘š 𝐾 2 : nuclear form factor function KIMS

8 Neutrino cross section on 𝛽 Β± decaying nuclei
πœ† 𝜈 = 𝐺 𝛽 2 πœ‹ π‘Š 0 +2 π‘š 𝜈 ∞ 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 𝐸 𝜈 𝑝 𝜈 𝑓 𝑝 𝜈 𝑑 𝐸 𝑒 πœ† 𝛽 = 𝐺 𝛽 2 2 πœ‹ 3 π‘š 𝑒 ∞ 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝛽 𝐸 𝜈 𝑝 𝜈 𝑓 𝑝 𝜈 𝑑 𝐸 𝑒 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 =𝐢 𝐸 𝑒 ,βˆ’ 𝑝 𝜈 𝛽 Mean shape factor 𝐢 𝛽 ≑ 1 𝑓 π‘š 𝑒 ∞ 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝛽 𝐸 𝜈 𝑝 𝜈 𝑓 𝑝 𝜈 𝑑 𝐸 𝑒 𝑓 𝑑 = 2 πœ‹ 3 ln 2 𝐺 𝛽 2 𝐢 𝛽 , 𝑓≑ π‘š 𝑒 ∞ 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝐸 𝜈 𝑝 𝜈 𝑓 𝑝 𝜈 𝑑 𝐸 𝑒 𝜎 𝑁𝐢𝐡 𝑣 𝜈 = 2 πœ‹ 3 ln 2 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 𝑓 𝑑 𝐢 𝛽 KIMS

9 Neutrino cross section on 𝛽 Β± decaying nuclei
𝐴= 𝑓 𝐢 𝛽 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 = π‘š 𝑒 π‘Š 0 𝑝′ 𝑒 𝐸 𝑒 β€² 𝐹 𝑍, 𝐸 𝑒 β€² 𝐢 𝐸 𝑒 β€² , 𝑝 𝜈 β€² 𝛽 𝐸 𝜈 β€² 𝑝 𝜈 β€² 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 𝐸 𝜈 𝑝 𝜈 𝑑 𝐸 𝑒 β€² 𝜎 𝑁𝐢𝐡 𝑣 𝜈 = 2 πœ‹ 2 ln 2 𝐴⋅ 𝑑 1 2 In some relevant cases, the evaluation of A is particularly simple. KIMS

10 Superallowed transitions
Large superposition between initial and final nuclear states β†’ The lowest known 𝑓 𝑑 value 0+ β†’ 0+ transition 𝐢 𝐸 𝑒 , 𝑝 𝜈 = ​ 𝑉 𝐹 ​ 2 =<𝐅 > 2 =(π‘‡βˆ’ 𝑇 3 )(𝑇+ 𝑇 3 +1) JΟ€ β†’ JΟ€, Jβ‰ 0 transition 𝐢 𝐸 𝑒 , 𝑝 𝜈 = ​ 𝑉 𝐹 ​ ​ 𝐴 𝐹 ​ 2 =<𝐅 > 𝑔 𝐴 𝑔 𝑉 <𝐆𝐓> 𝑇, 𝑇 3 : isospin quantum numbers 𝑔: the axial (vector) coupling constant KIMS

11 Superallowed transitions
𝐴= 𝑓 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝜎 𝑁𝐢𝐡 𝑣 𝜈 = 2 πœ‹ 2 ln 2 𝑝 𝑒 𝐸 𝑒 𝐹 𝑍, 𝐸 𝑒 𝑓⋅ 𝑑 1 2 KIMS

12 Specific case of tritium
3Hβ†’ 3He 𝑄 𝛽 = keV, 𝑑 = years <𝐅 > 2 =0.9987, <𝐆𝐓> = 3 β‹…(0.964Β±0.016) 𝐺 𝐹 = Γ— 10 βˆ’5 GeV βˆ’2 𝑔 𝐴 = 𝑉 𝑒𝑑 = Assuming a total 1.6% systematic uncertainty on the Gamow-Teller matrix element evaluation 𝜎 𝑁𝐢𝐡 ( 3 𝐻) 𝑣 𝜈 𝑐 = 7.7Β±0.2 Γ— 10 βˆ’45 cm 2 Only experimental uncertainties on 𝑄 𝛽 & 𝑑 1 2 𝜎 𝑁𝐢𝐡 ( 3 𝐻) 𝑣 𝜈 𝑐 = 7.84Β±0.03 Γ— 10 βˆ’45 cm 2 KIMS

13 Allowed transitions 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝛽 = ​ 𝑉 𝐹 ​ ​ 𝐴 𝐹 ​ 2 +𝑂 𝑝 𝑒 𝑅 𝑂(𝛼𝑍) If only the leading terms are taken into account: 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝛽 =𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 =constant 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝛽 /𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 β‰…1 KIMS

14 K-th forbidden transitions
𝐢 𝐸 𝑒 , 𝑝 𝜈 𝛽 = ​ 𝐴 𝐹 πΏπΏβˆ’ ​ 2 Γ— 𝑛=1 𝐿 𝐡 𝐿 𝑛 πœ† 𝑛 𝑝 𝑒 𝑅 2 π‘›βˆ’1 𝑝 𝜈 𝑅 2 πΏβˆ’π‘› K: degree of forbidness, L=K+1 𝐡 𝐿 𝑛 :numerical coefficient, πœ† 𝑛 : numerical function If only the leading terms are taken into account: 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝛽 =𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 =constant 𝐢 𝐸 𝑒 , 𝑝 𝜈 𝛽 /𝐢 𝐸 𝑒 , 𝑝 𝜈 𝜈 β‰…1 KIMS

15 Estimating: 𝑄 3 /𝐴 vs. 𝑄 KIMS

16 Estimating: 𝑓/𝑄 3 vs. 𝑄 KIMS

17 Estimating: 𝜎 𝑁𝐢𝐡 𝑣 𝜈 vs. 𝐸 𝜈 ( 𝛽 βˆ’ )
KIMS

18 Estimating: 𝜎 𝑁𝐢𝐡 𝑣 𝜈 vs. 𝐸 𝜈 ( 𝛽 + )
KIMS

19 Estimating: 𝜎 𝑁𝐢𝐡 𝑣 𝜈 vs. 𝑄
KIMS

20 NCB vs 𝛽 decay for relic neutrinos
In spite of no threshold, the ratio is very small. πœ† 𝜈 πœ† 𝛽 = lim 𝑝 𝜈 β†’0 𝜎 𝑁𝐢𝐡 𝑣 𝜈 𝑛 𝜈 𝑑 ln⁑2 = lim 𝑝 𝜈 β†’0 2 πœ‹ 2 𝐴 𝑛 𝜈 Relic neutrinos have a very small mean momentum of order 𝑇 𝜈 . The case of 3H πœ† 𝜈 =0.66β‹… 10 βˆ’23 πœ† 𝛽 Too small! The little mass of neutrino & the experimental energy solution β†’ hard to distinguish NCB from standard beta events KIMS

21 NCB vs 𝛽 decay for relic neutrinos
Optimistic scenario An energy resolution Ξ” in the future eV range neutrino mass For the last beta decay electron energy bin π‘Š 0 βˆ’Ξ”< 𝐸 𝑒 < π‘Š 0 πœ† 𝜈 πœ† 𝛽 (Ξ”) ~2.2β‹… 10 βˆ’10 for Ξ”=0.2 eV, π‘š 𝜈 =0.5 eV Total event rate πœ† 𝜈 𝑁 𝐴 𝑀[𝑔] 𝐴 =2.85β‹… 10 βˆ’2 𝜎 𝑁𝐢𝐡 𝑣 𝜈 𝑐 10 βˆ’45 cm 2 y βˆ’1 mol βˆ’1 KIMS

22 NCB vs 𝛽 decay for relic neutrinos
Gravitational clustering enlarges the massive neutrino density. 10~20 for 0.6 eV 3~4 for 0.3 eV Nearly homogeneous for mass < 0.1 eV KIMS

23 Conclusion 𝜎 𝑁𝐢𝐡 𝑣 𝜈 can be as large as 10 βˆ’42 ~ 10 βˆ’43 cm 2 𝑐
High event rate: 10 events/year with 100 g of 3H Can be larger for π‘š 𝜈 =0.3~0.7 eV and gravitational clustering: 20~150 events/year A reasonable rejection of the background due to standard 𝛽 decay Necessary to reach a sensitivity better than the value of 𝜈 masses Ex) π‘š 𝜈 =0.5 eV, Ξ”=0.1~0.2 eV If smaller, the mass will be evaluated very hard. KIMS


Download ppt "Review: Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei Cocco A, Magnano G and Messina M 2007 J. Cosmol. Astropart."

Similar presentations


Ads by Google