Download presentation
Presentation is loading. Please wait.
Published byAlaina Day Modified over 6 years ago
1
Review: Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei Cocco A, Magnano G and Messina M 2007 J. Cosmol. Astropart. Phys. JCAP06(2007)015 Kim, Hanbeom
2
Introduction (Anti)neutrino capture on beta decaying nuclei (NCB inteaction) Ordinary beta decay Minimum gap of 2 π π Able to distinguish beta decay and NCB interaction π(π) π(πβ²) π π½ πΈ π Β± = π π½ β πΈ π NCB πΈ π Β± = π π½ + πΈ π Ordinary KIMS
3
Introduction Neutrino mass: eV range is still allowed
Oscillation experiment: a lower limit β the order of 0.05 eV Direct measurements in 3H decay: < 2 eV Data from Cosmic Microwave Background anisotropies and Large Scale Structure power spectrum: 0.3 β 2 eV KIMS
4
Introduction The relic (anti)neutrino Number density
π π ~50 π π β3 per flavor Very small mean kinetic energy Nonrelativistic: 6.5 π π 2 / π π , relativistic: π π π π = π πΎ ~1.7β 10 β4 eV Chemical potential π π π β€0.1 Too small to experimentally detect degeneracy due to chemical potential KIMS
5
Neutrino cross section on π½ Β± decaying nuclei
NCB and its corresponding beta decay are essentially the same phenomenon. The same invariant squared amplitude Use beta decay formalism to derive NCB cross section expression Long wavelength limit approximation π π π
βͺ1 Holds for πΈ π β²10 MeV KIMS
6
Neutrino cross section on π½ Β± decaying nuclei
NCB integrated rate π π = π ππΆπ΅ π£ π π π π π 3 π π 2π 3 π π π = exp π π π π β1 (the particular case of relic neutrinos) Cross section π ππΆπ΅ π£ π = πΊ π½ 2 π π π πΈ π πΉ π, πΈ π πΆ πΈ π , π π π Behrens H and BΓΌringW, 1982 Electron Radial Wave Functions and Nuclear Beta Decay Clarendon Oxford. πΉ πΈ : Fermi function, exp πΈβ πΈ πΉ ππ +1 β1 Energy πΈ π = πΈ π + π π½ + π π = πΈ π + π π + π 0 π 0 : corresponding beta decay endpoint KIMS
7
Neutrino cross section on π½ Β± decaying nuclei
π π = πΊ π½ 2 π π 0 +2 π π β π π πΈ π πΉ π, πΈ π πΆ πΈ π , π π π πΈ π π π π π π π πΈ π Nuclear shape factor An angular momentum weighted average of nuclear state transition amplitudes πΆ πΈ π , π π π½ = π π , π π ,πΎ π π π [ π πΎ 2 π π , π π + π πΎ 2 π π , π π β 2 π π π π π πΎ π π π π πΈ π π πΎ 2 ( π π , π π ) π πΎ 2 ( π π , π π )] π: radial wave function (=π+1/2) K: nuclear transition multipolarity: ( π π β π π β€πΎβ€ π π + π π ) π πΎ 2 , π πΎ 2 : nuclear form factor function KIMS
8
Neutrino cross section on π½ Β± decaying nuclei
π π = πΊ π½ 2 π π 0 +2 π π β π π πΈ π πΉ π, πΈ π πΆ πΈ π , π π π πΈ π π π π π π π πΈ π π π½ = πΊ π½ 2 2 π 3 π π β π π πΈ π πΉ π, πΈ π πΆ πΈ π , π π π½ πΈ π π π π π π π πΈ π πΆ πΈ π , π π π =πΆ πΈ π ,β π π π½ Mean shape factor πΆ π½ β‘ 1 π π π β π π πΈ π πΉ π, πΈ π πΆ πΈ π , π π π½ πΈ π π π π π π π πΈ π π π‘ = 2 π 3 ln 2 πΊ π½ 2 πΆ π½ , πβ‘ π π β π π πΈ π πΉ π, πΈ π πΈ π π π π π π π πΈ π π ππΆπ΅ π£ π = 2 π 3 ln 2 π π πΈ π πΉ π, πΈ π πΆ πΈ π , π π π π π‘ πΆ π½ KIMS
9
Neutrino cross section on π½ Β± decaying nuclei
π΄= π πΆ π½ π π πΈ π πΉ π, πΈ π πΆ πΈ π , π π π = π π π 0 πβ² π πΈ π β² πΉ π, πΈ π β² πΆ πΈ π β² , π π β² π½ πΈ π β² π π β² π π πΈ π πΉ π, πΈ π πΆ πΈ π , π π π πΈ π π π π πΈ π β² π ππΆπ΅ π£ π = 2 π 2 ln 2 π΄β
π‘ 1 2 In some relevant cases, the evaluation of A is particularly simple. KIMS
10
Superallowed transitions
Large superposition between initial and final nuclear states β The lowest known π π‘ value 0+ β 0+ transition πΆ πΈ π , π π = β π πΉ β 2 =<π
> 2 =(πβ π 3 )(π+ π 3 +1) JΟ β JΟ, Jβ 0 transition πΆ πΈ π , π π = β π πΉ β β π΄ πΉ β 2 =<π
> π π΄ π π <ππ> π, π 3 : isospin quantum numbers π: the axial (vector) coupling constant KIMS
11
Superallowed transitions
π΄= π π π πΈ π πΉ π, πΈ π π ππΆπ΅ π£ π = 2 π 2 ln 2 π π πΈ π πΉ π, πΈ π πβ
π‘ 1 2 KIMS
12
Specific case of tritium
3Hβ 3He π π½ = keV, π‘ = years <π
> 2 =0.9987, <ππ> = 3 β
(0.964Β±0.016) πΊ πΉ = Γ 10 β5 GeV β2 π π΄ = π π’π = Assuming a total 1.6% systematic uncertainty on the Gamow-Teller matrix element evaluation π ππΆπ΅ ( 3 π») π£ π π = 7.7Β±0.2 Γ 10 β45 cm 2 Only experimental uncertainties on π π½ & π‘ 1 2 π ππΆπ΅ ( 3 π») π£ π π = 7.84Β±0.03 Γ 10 β45 cm 2 KIMS
13
Allowed transitions πΆ πΈ π , π π π½ = β π πΉ β β π΄ πΉ β 2 +π π π π
π(πΌπ) If only the leading terms are taken into account: πΆ πΈ π , π π π½ =πΆ πΈ π , π π π =constant πΆ πΈ π , π π π½ /πΆ πΈ π , π π π β
1 KIMS
14
K-th forbidden transitions
πΆ πΈ π , π π π½ = β π΄ πΉ πΏπΏβ β 2 Γ π=1 πΏ π΅ πΏ π π π π π π
2 πβ1 π π π
2 πΏβπ K: degree of forbidness, L=K+1 π΅ πΏ π :numerical coefficient, π π : numerical function If only the leading terms are taken into account: πΆ πΈ π , π π π½ =πΆ πΈ π , π π π =constant πΆ πΈ π , π π π½ /πΆ πΈ π , π π π β
1 KIMS
15
Estimating: π 3 /π΄ vs. π KIMS
16
Estimating: π/π 3 vs. π KIMS
17
Estimating: π ππΆπ΅ π£ π vs. πΈ π ( π½ β )
KIMS
18
Estimating: π ππΆπ΅ π£ π vs. πΈ π ( π½ + )
KIMS
19
Estimating: π ππΆπ΅ π£ π vs. π
KIMS
20
NCB vs π½ decay for relic neutrinos
In spite of no threshold, the ratio is very small. π π π π½ = lim π π β0 π ππΆπ΅ π£ π π π π‘ lnβ‘2 = lim π π β0 2 π 2 π΄ π π Relic neutrinos have a very small mean momentum of order π π . The case of 3H π π =0.66β
10 β23 π π½ Too small! The little mass of neutrino & the experimental energy solution β hard to distinguish NCB from standard beta events KIMS
21
NCB vs π½ decay for relic neutrinos
Optimistic scenario An energy resolution Ξ in the future eV range neutrino mass For the last beta decay electron energy bin π 0 βΞ< πΈ π < π 0 π π π π½ (Ξ) ~2.2β
10 β10 for Ξ=0.2 eV, π π =0.5 eV Total event rate π π π π΄ π[π] π΄ =2.85β
10 β2 π ππΆπ΅ π£ π π 10 β45 cm 2 y β1 mol β1 KIMS
22
NCB vs π½ decay for relic neutrinos
Gravitational clustering enlarges the massive neutrino density. 10~20 for 0.6 eV 3~4 for 0.3 eV Nearly homogeneous for mass < 0.1 eV KIMS
23
Conclusion π ππΆπ΅ π£ π can be as large as 10 β42 ~ 10 β43 cm 2 π
High event rate: 10 events/year with 100 g of 3H Can be larger for π π =0.3~0.7 eV and gravitational clustering: 20~150 events/year A reasonable rejection of the background due to standard π½ decay Necessary to reach a sensitivity better than the value of π masses Ex) π π =0.5 eV, Ξ=0.1~0.2 eV If smaller, the mass will be evaluated very hard. KIMS
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.