Download presentation
Presentation is loading. Please wait.
Published byShinta Sudjarwadi Modified over 6 years ago
1
Individual Growth Population Biomass Recruitment Natural Mortality
Fishing Mortality Immigration Emigration Growth
2
Length-At-Age Data TL Age Species 24 6 Rainbow 26 8 Rainbow
data(TroutBR) rbt <- TroutBR[TroutBR$Species=="Rainbow",] attach(rbt) plot(jitter(TL,1)~jitter(Age,0.5),xlab="Age [jittered]",ylab="Total Length (in) [jittered]") Size At Age
3
Length-At-Age Models Purposes Main models
Summarize growth with a few parameters. Compare growth parameters among populations. Used in key fisheries models, such as Beverton-Holt yield models. Main models Von Bertalanffy Gompertz Schnute Size At Age
4
Von Bertalanffy Growth Model
By far the most prevalent growth model. Developed by Ludwig von Bertalanffy in 1938. Derived from … basic physiological principles of anabolism and catabolism. by assuming rate of growth declines linearly with increasing length. Size At Age
5
Von Bertalanffy Growth Model
Explore parameters with growthModelSim(“vbTypical”) L∞ = asymptotic mean length K = Brody “growth” coefficient not a true measure of the “growth rate” controls how fast L∞ is approached Log(2)/K is time to get halfway between a length and L∞ to = time when mean length is 0 (artifact) Size At Age
6
Von Bertalanffy Growth Model
growmodel.sim("vb",Age,TL,max.len=35) svb <- list(Linf=31.3,K=0.3,to=0.6) vbl1 <- nls(TL~Linf*(1-exp(-K*(Age-to))),start=svb) windows(4,4); par(mar=c(3.5,3.5,1,1),mgp=c(2,0.75,0)) ylmt <- c(-2,32); xlmt<-c(1.5,10) plot(jitter(Age,0.5),jitter(TL,1),xlab="Age",ylab="Total Length (in)",ylim=ylmt,xlim=xlmt,pch=19) x <- data.frame(Age=seq(1.5,10,by=0.1)) y <- predict(vbl1,x) lines(x$Age,y,lwd=1,lty=1,col="red") Linf <- coef(vbl1)[1]; to <- coef(vbl1)[3] lines(c(to,to),c(-5,2),lwd=2,lty=3,col="blue") lines(c(1,2),c(0,0),lwd=2,lty=3,col="blue") points(to,0,col="blue",pch=19,cex=1.25) text(to,-4.5,expression(t[o]),xpd=T,col="blue",cex=1.25) abline(h=Linf,lwd=2,lty=3,col="blue") text(0.8,Linf,expression(L[infinity]),xpd=T,col="blue",cex=1.25) Size At Age
7
Galucci & Quinn Parameterization
New parameter is w=KL∞ a measure of growth rate in the vicinity of t0 “New” model looks like Explore model parameters with growthModelSim(“vbGalucciQuinn”) Size At Age
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.