Download presentation
Presentation is loading. Please wait.
2
CHAPTER 2: More on Functions
2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.2 The Algebra of Functions 2.3 The Composition of Functions 2.4 Symmetry and Transformations 2.5 Variation and Applications Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
3
2.2 The Algebra of Functions
Find the sum, the difference, the product, and the quotient of two functions, and determine the domains of the resulting functions. Find the difference quotient for a function. Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
4
Sums, Differences, Products, and Quotients of Functions
If f and g are functions and x is in the domain of each function, then Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
5
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
Example Given that f(x) = x + 2 and g(x) = 2x + 5, find each of the following. a) (f + g)(x) b) (f + g)(5) Solution: a) (f + g)(x)= f (x)+g(x) =x+2+2x+5 =3x+7 b) We can find (f + g)(5) provided 5 is in the domain of each function. This is true. f(5) = = 7 g(5) = 2(5) + 5 = 15 (f + g)(5) = f(5) + g(5) = = 22 or (f + g)(5) = 3(5) + 7 = 22 Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
6
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
Another Example Given that f(x) = x2 + 2 and g(x) = x 3, find each of the following. a) The domain of f + g, f g, fg, and f/g b) (f g)(x) c) (f/g)(x) Solution: a) The domain of f is the set of all real numbers. The domain of g is also the set of all real numbers. The domains of f + g, f g, and fg are the set of numbers in the intersection of the domains—that is, the set of numbers in both domains, or all real numbers. For f/g, we must exclude 3, since g(3) = 0. Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
7
Another Example continued
b) (f g)(x) = f(x) g(x) = (x2 + 2) (x 3) = x2 x + 5 c) (f/g)(x) = Remember to add the stipulation that x 3, since 3 is not in the domain of (f/g)(x). Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
8
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
Difference Quotient The ratio below is called the difference quotient, or average rate of change. Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
9
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
Example For the function f given by f (x) = 5x 1, find the difference quotient Solution: We first find f (x + h): Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
10
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
Example continued Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
11
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
Another Example For the function f given by f (x) = x2 + 2x 3, find the difference quotient. Solution: We first find f (x + h): Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
12
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
Example continued Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.