Download presentation
Presentation is loading. Please wait.
1
Protein Structure Prediction
Sequence + Dr. G.P.S. Raghava Structure
2
Protein Structure Prediction
Experimental Techniques X-ray Crystallography NMR Limitations of Current Experimental Techniques Protein DataBank (PDB) -> protein structures SwissProt -> 100,000 proteins Non-Redudant (NR) -> 10,00,000 proteins Importance of Structure Prediction Fill gap between known sequence and structures Protein Engg. To alter function of a protein Rational Drug Design
3
Different Levels of Protein Structure
5
Protein Architecture Proteins consist of amino acids linked by peptide bonds Each amino acid consists of: a central carbon atom an amino group a carboxyl group and a side chain Differences in side chains distinguish the various amino acids
6
Amino Acid Side Chains Vary in: Size Shape Polarity
7
Peptide Bond
8
Peptide Bonds
9
Dihedral Angles
10
Conformation Flexibility
Backbone (main chain of atoms in peptide bonds, minus side chains) conformation: Torsion or rotation angles around: C-N bond () C-C bond () Sterical hinderance: Most – Pro Least - Gly
11
Ramachandran Plot
12
Protein Secondary Structure
Regular Secondary Structure (-helices, -sheets) Irregular Secondary Structure (Tight turns, Random coils, bulges)
13
Secondary Structure: Helices
ALPHA HELIX : a result of H-bonding between every fourth peptide bond (via amino and carbonyl groups) along the length of the polypeptide chain Individual Amino acid H-bond
15
Helix formation is local
THYROID hormone receptor (2nll)
16
Secondary Structure: Beta Sheets
BETA PLEATED SHEET: a result of H-bonding between polypeptide chains
17
b-sheet formation is NOT local
18
Definition of -turn A -turn is defined by four consecutive residues i, i+1, i+2 and i+3 that do not form a helix and have a C(i)-C(i+3) distance less than 7Å and the turn lead to reversal in the protein chain. (Richardson, 1981). The conformation of -turn is defined in terms of and of two central residues, i+1 and i+2 and can be classified into different types on the basis of and . i+1 i+2 i H-bond i+3 D <7Å
20
Tight turns 2 3 4 5 6 Type No. of residues H-bonding -turn
NH(i)-CO(i+1) -turn 3 CO(i)-NH(i+2) -turn 4 CO(i)-NH(i+3) -turn 5 CO(i)-NH(i+4) -turn 6 CO(i)-NH(i+5)
21
Secondary Structure shortcuts
22
Tertiary Structure: Hexokinase (6000 atoms, 48 kD, 457 amino acids)
polypeptides with a tertiary level of structure are usually referred to as globular proteins, since their shape is irregular and globular in form
23
Quarternary Structure: Haemoglobin
24
What determines fold? Anfinsen’s experiments in 1957 demonstrated that proteins can fold spontaneously into their native conformations under physiological conditions. This implies that primary structure does indeed determine folding or 3-D stucture. Some exceptions exist Chaperone proteins assist folding Abnormally folded Prion proteins can catalyze misfolding of normal prion proteins that then aggregate
25
Levels of Description of Structural Complexity
Primary Structure (AA sequence) Secondary Structure Spatial arrangement of a polypeptide’s backbone atoms without regard to side-chain conformations , , coil, turns (Venkatachalam, 1968) Super-Secondary Structure , , /, + (Rao and Rassman, 1973) Tertiary Structure 3-D structure of an entire polypeptide Quarternary Structure Spatial arrangement of subunits (2 or more polypeptide chains)
26
Techniques of Structure Prediction
Computer simulation based on energy calculation Based on physio-chemical principles Thermodynamic equilibrium with a minimum free energy Global minimum free energy of protein surface Knowledge Based approaches Homology Based Approach Threading Protein Sequence Hierarchical Methods
27
Energy Minimization Techniques
Energy Minimization based methods in their pure form, make no priori assumptions and attempt to locate global minma. Static Minimization Methods Classical many potential-potential can be construted Assume that atoms in protein is in static form Problems(large number of variables & minima and validity of potentials) Dynamical Minimization Methods Motions of atoms also considered Monte Carlo simulation (stochastics in nature, time is not cosider) Molecular Dynamics (time, quantum mechanical, classical equ.) Limitations large number of degree of freedom,CPU power not adequate Interaction potential is not good enough to model
28
Molecular Dynamics Provides a way to observe the motion of large molecules such as proteins at the atomic level – dynamic simulation Newton’s second law applied to molecules Potential energy function Molecular coordinates Force on all atoms can be calculated, given this function Trajectory of motion of molecule can be determined
29
Knowledge Based Approaches
Homology Modelling Need homologues of known protein structure Backbone modelling Side chain modelling Fail in absence of homology Threading Based Methods New way of fold recognition Sequence is tried to fit in known structures Motif recognition Loop & Side chain modelling Fail in absence of known example
30
Homology Modeling Simplest, reliable approach
Basis: proteins with similar sequences tend to fold into similar structures Has been observed that even proteins with 25% sequence identity fold into similar structures Does not work for remote homologs (< 25% pairwise identity)
31
Homology Modeling Given:
A query sequence Q A database of known protein structures Find protein P such that P has high sequence similarity to Q Return P’s structure as an approximation to Q’s structure
32
Threading Given: Find:
sequence of protein P with unknown structure Database of known folds Find: Most plausible fold for P Evaluate quality of such arrangement Places the residues of unknown P along the backbone of a known structure and determines stability of side chains in that arrangement
33
Hierarcial Methods Intermidiate structures are predicted, instead of predicting tertiary structure of protein from amino acids sequence Prediction of backbone structure Secondary structure (helix, sheet,coil) Beta Turn Prediction Super-secondary structure Tertiary structure prediction Limitation Accuracy is only % Only three state prediction
34
Thanks
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.