Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chromosomes and Chromosome Number

Similar presentations


Presentation on theme: "Chromosomes and Chromosome Number"— Presentation transcript:

1 Chromosomes and Chromosome Number
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Chromosomes and Chromosome Number Human body cells have 46 chromosomes Each parent contributes 23 chromosomes Homologous chromosomes—one of two paired chromosomes, one from each parent

2 Homologous chromosomes
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Homologous chromosomes Same length Same centromere position Carry genes that control the same inherited traits

3 Haploid and Diploid Cells
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Haploid and Diploid Cells An organism produces gametes to maintain the same number of chromosomes from generation to generation. Human gametes contain 23 chromosomes. A cell with n chromosomes is called a haploid cell. A cell that contains 2n chromosomes is called a diploid cell.

4 The sexual life cycle in animals involves meiosis.
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis I The sexual life cycle in animals involves meiosis. Meiosis produces gametes. When gametes combine in fertilization, the number of chromosomes is restored.

5 Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Stages of Meiosis I Reduces the chromosome number by half through the separation of homologous chromosomes Involves two consecutive cell divisions called meiosis I and meiosis II

6 Chromosomes replicate.
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis I Interphase Chromosomes replicate. Chromatin condenses. Interphase

7 Pairing of homologous chromosomes occurs.
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis I Prophase I Pairing of homologous chromosomes occurs. Each chromosome consists of two chromatids. Prophase I The nuclear envelope breaks down. Spindles form.

8 Crossing over produces exchange of genetic information.
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis I Prophase I Crossing over produces exchange of genetic information. Crossing over—chromosomal segments are exchanged between a pair of homologous chromosomes.

9 Chromosome centromeres attach to spindle fibers.
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis I Metaphase I Chromosome centromeres attach to spindle fibers. Metaphase I Homologous chromosomes line up at the equator.

10 Homologous chromosomes separate and move
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis I Anaphase I Homologous chromosomes separate and move to opposite poles of the cell. Anaphase I

11 The spindles break down.
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis I Telophase I The spindles break down. Telophase I Chromosomes uncoil and form two nuclei. The cell divides.

12 A second set of phases begins
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis II Prophase II A second set of phases begins as the spindle apparatus forms and the chromosomes condense. Prophase II

13 A haploid number of chromosomes
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis II Metaphase II A haploid number of chromosomes line up at the equator. Metaphase II

14 The sister chromatids are
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis II Anaphase II The sister chromatids are pulled apart at the centromere by spindle fibers and move toward the opposite poles of the cell. Anaphase II

15 The chromosomes reach the poles, and
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis II Telophase II The chromosomes reach the poles, and the nuclear membrane and nuclei reform. Telophase II

16 Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis Meiosis II Cytokinesis results in four haploid cells, each with n number of chromosomes. Cytokinesis

17 Chapter 10 Sexual Reproduction and Genetics

18 The Importance of Meiosis
Chapter 10 Sexual Reproduction and Genetics 10.1 Meiosis The Importance of Meiosis Meiosis consists of two sets of divisions Produces four haploid daughter cells that are not identical Results in genetic variation

19 Chapter 10 Sexual Reproduction and Genetics


Download ppt "Chromosomes and Chromosome Number"

Similar presentations


Ads by Google