Download presentation
Presentation is loading. Please wait.
Published byShawn Randall Modified over 6 years ago
1
Guide to Using Excel 2007 For Basic Statistical Applications
To Accompany Business Statistics: A Decision Making Approach, 8th Ed. Chapter 5: Introduction to Discrete Probability Distributions By Groebner, Shannon, Fry, & Smith Prentice-Hall Publishing Company Copyright, 2011
2
Chapter 5 Excel Examples
Binomial Mean Catalog Sales Poisson Distribution – Heritage Tile More Examples
3
Binomial Mean- Catalog Sales
Issue: People who order items from catalogs can return the items for a refund. Historical return rate for one catalog has been 11 percent. Is this rate still valid? Objective: Use Excel 2007 to compute binomial probabilities based on a sample of 300 purchases.
4
Binomial Mean – Catalog Sales
Situation: Sample Size is n=300 p = .11 Mean = np = 300(.11) = 33 44 returns were observed P(X > 44) = 1 – P(X < 43) Find P(X < 43) = ?
5
Binomial Mean – Catalog Sales
Select Formulas tab Select More Functions Select Statistical Select BINOMDIST
6
Binomial Mean – Catalog Sales
Enter values: Note: True = cumulative probability. False = exact probability Binomial Probability Result
7
Poisson Distribution Heritage Title
Issue: The distribution for the number of defects per tile made by Heritage Tile is Poisson distributed with a mean of 3 defects per tile. The manager is worried about the high variability Objective: Use Excel 2007 to generate the Poisson distribution and histogram to visually see spread in the distribution of possible defects.
8
Poisson Distribution – Heritage Tile
Enter values zero through 10
9
Poisson Distribution – Heritage Tile
Select Formulas, More Functions, Statistical and POISSON
10
Poisson Distribution – Heritage Tile
Enter: a1, 3, false
11
Poisson Distribution – Heritage Tile
Notice that I had pre-selected Cell B1. When I pressed enter the Poisson Probability was loaded into that cell. Simply copy and paste Cell B1 into cells B2 : B11
12
Poisson Distribution – Heritage Tile
Select the Insert tab Select Column Select the chart type that you want
13
Poisson Distribution – Heritage Tile
Format the chart as per Chapter 2
14
Creating A Binomial Table
Issue: The binomial tables in this text contain specific probabilities for certain values of n and p. You may need to have more extensive tables. Objective: Use Excel 2007 to generate the Binomial table for n = 25 and p value of .01 to .50 in increments of .01
15
Creating A Binomial Table
Sample size in Cell B1 p-values in Row 2 x-values in Column B
16
Creating A Binomial Table
P(x =0) = for n = 25, p = .01 Notice the use of absolute cell referencing – this allows you to copy the function across and down to complete this section of the binomial table
17
Creating A Binomial Table
Copy the contents (formula) of Cell C3 over the entire table
18
Creating A Binomial Table
Clear all Cells with a value of Zero
19
Creating A Binomial Table
Repeat for the next set of values for p: 0.11, 0.12 … 0.20 Simply change the contents of Row 2. Continue this for all possible values of p. For different sample sizes (n) change Cell B1 and Row B
20
Creating A Poisson Table
Issue: The Poisson tables in this text contain specific probabilities for certain values of λt . You may need to have more extensive tables. Objective: Use Excel 2007 to generate the Poisson Table table for λt = 6.0 to 7.0 in increments of .10
21
Creating A Poisson Table
λt values in row 2 Values of x in column A
22
Creating A Poisson Table
P(x = 0) for λt = 6.0 equals Notice the use of absolute cell referencing this allows you to copy the function across and down to complete this section of the binomial table
23
Creating A Poisson Table
Continue this process for other λt values as desired. As λt increases, the possible values for x will have to increase.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.