Download presentation
Presentation is loading. Please wait.
Published byBrenda Bryant Modified over 6 years ago
1
AP Calculus March 22, 2010 Berkley High School, D1B1
Section 12.2 Series AP Calculus March 22, 2010 Berkley High School, D1B1
2
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
Sequence vs. Series a1=1 s1=1 a6=6 s6=15+6=21 a2=2 s2=1+2=3 a7=7 s7=21+7=28 a3=3 s3=3+3=6 a8=8 s8=28+8=36 a4=4 s4=6+4=10 a9=9 s9=36+9=45 a5=5 s5=10+5=15 a10=10 s10=45+10=55 Calculus, Section 12.2, Todd Fadoir, CASA, 2005
3
Sequence, Finite Series, Infinite Series
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
4
Convergent Series & Divergent Series
If s exists, we say the series is convergent (or we say it converges) Otherwise, we say the series is divergent (or we say it diverges) Calculus, Section 12.2, Todd Fadoir, CASA, 2005
5
Divergent series example
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
6
Simple Tests for Divergence
If limn->∞an≠0, then s diverges. If limn->∞an=0, then s may converge. Calculus, Section 12.2, Todd Fadoir, CASA, 2005
7
Convergent series example
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
8
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
Example: Convergent Calculus, Section 12.2, Todd Fadoir, CASA, 2005
9
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
10
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
11
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
Geometric series If there is a geometric series with -1<r<1, then the series converges Otherwise, it diverges Calculus, Section 12.2, Todd Fadoir, CASA, 2005
12
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
13
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
Geometric series If there is a geometric series with -1<r<1, then the series converges | to a/(1-r) Otherwise, it diverges Calculus, Section 12.2, Todd Fadoir, CASA, 2005
14
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
Example Calculus, Section 12.2, Todd Fadoir, CASA, 2005
15
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
16
Calculus, Section 12.2, Todd Fadoir, CASA, 2005
Exercises Section 12.2: 1, 3, 9-31 odd Calculus, Section 12.2, Todd Fadoir, CASA, 2005
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.