Download presentation
Presentation is loading. Please wait.
Published byWendy Eaton Modified over 6 years ago
1
Measuring correlation functions in interacting systems of cold atoms
Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin Harvard Eugene Demler Harvard Thanks to: M. Greiner , Z. Hadzibabic, M. Oberthaler, J. Schmiedmayer, V. Vuletic
2
Correlation functions in condensed matter physics
Most experiments in condensed matter physics measure correlation functions Example: neutron scattering measures spin and density correlation functions Neutron diffraction patterns for MnO Shull et al., Phys. Rev. 83:333 (1951)
3
Outline Lecture I: Measuring correlation functions in intereference experiments Lecture II: Quantum noise interferometry in time of flight experiments Emphasis of these lectures: detection and characterization of many-body quantum states
4
Lecture I Measuring correlation functions in intereference experiments
1. Interference of independent condensates 2. Interference of interacting 1D systems 3. Interference of 2D systems 4. Full distribution function of the fringe amplitudes in intereference experiments. 5. Studying coherent dynamics of strongly interacting systems in interference experiments
5
Lecture II Quantum noise interferometry in time of flight experiments
1. Detection of spin order in Mott states of atomic mixtures 2. Detection of fermion pairing
6
Measuring correlation functions in intereference experiments
Analysis of high order correlation functions in low dimensional systems Polkovnikov, Altman, Demler, PNAS (2006)
7
Interference of two independent condensates
Andrews et al., Science 275:637 (1997)
8
Interference of two independent condensates
1 r+d d 2 Clouds 1 and 2 do not have a well defined phase difference. However each individual measurement shows an interference pattern
9
Interference of one dimensional condensates
Experiments: Schmiedmayer et al., Nature Physics (2005) d Amplitude of interference fringes, , contains information about phase fluctuations within individual condensates x1 x2 y x
10
Interference amplitude and correlations
For identical condensates Instantaneous correlation function
11
Interacting bosons in 1d at T=0
Low energy excitations and long distance correlation functions can be described by the Luttinger Hamiltonian. K – Luttinger parameter Connection to original bosonic particles Small K corresponds to strong quantum fluctuations
12
Luttinger liquids in 1d For non-interacting bosons For impenetrable bosons Correlation function decays rapidly for small K. This decay comes from strong quantum fluctuations
13
Interference between 1d interacting bosons
Luttinger liquid at T=0 L K – Luttinger parameter For non-interacting bosons and For impenetrable bosons and Luttinger liquid at finite temperature Analysis of can be used for thermometry
14
Rotated probe beam experiment
For large imaging angle, , Luttinger parameter K may be extracted from the angular dependence of q
15
Interference between two-dimensional
BECs at finite temperature. Kosteritz-Thouless transition
16
Interference of two dimensional condensates
Experiments: Stock, Hadzibabic, Dalibard, et al., cond-mat/ Gati, Oberthaler, et al., cond-mat/ Lx Ly Lx Probe beam parallel to the plane of the condensates
17
Interference of two dimensional condensates
Interference of two dimensional condensates. Quasi long range order and the KT transition Ly Lx Above Kosterlitz-Thouless transition: Vortices proliferate. Short range order Below Kosterlitz-Thouless transition: Vortices confined. Quasi long range order Above KT transition Below KT transition
18
Experiments with 2D Bose gas
Hadzibabic et al., Nature (2006) z Time of flight x Typical interference patterns low temperature higher temperature
19
Experiments with 2D Bose gas
Hadzibabic et al., Nature (2006) x z integration over x axis integration distance Dx (pixels) Contrast after integration 0.4 0.2 10 20 30 middle T z low T high T integration over x axis z integration over x axis Dx z
20
Experiments with 2D Bose gas
Hadzibabic et al., Nature (2006) 0.4 0.2 10 20 30 low T middle T high T fit by: Integrated contrast Exponent a central contrast 0.5 0.1 0.2 0.3 0.4 high T low T “Sudden” jump!? integration distance Dx if g1(r) decays exponentially with : if g1(r) decays algebraically or exponentially with a large :
21
Experiments with 2D Bose gas
Hadzibabic et al., Nature (2006) Exponent a T (K) 1.0 1.1 1.2 c.f. Bishop and Reppy 0.5 0.1 0.2 0.3 0.4 high T low T central contrast Ultracold atoms experiments: jump in the correlation function. KT theory predicts a=1/4 just below the transition He experiments: universal jump in the superfluid density
22
Experiments with 2D Bose gas
Experiments with 2D Bose gas. Proliferation of thermal vortices Haddzibabic et al., Nature (2006) Fraction of images showing at least one dislocation 10% 20% 30% central contrast 0.1 0.2 0.3 0.4 high T low T
23
Rapidly rotating two dimensional condensates
Time of flight experiments with rotating condensates correspond to density measurements Interference experiments measure single particle correlation functions in the rotating frame
24
Full distribution function of the amplitude of interference fringes
Interference between two interacting one dimensional Bose liquids Full distribution function of the amplitude of interference fringes Gritsev, Altman, Demler, Polkovnikov, cond-mat/
25
Higher moments of interference amplitude
is a quantum operator. The measured value of will fluctuate from shot to shot. Can we predict the distribution function of ? Higher moments Changing to periodic boundary conditions (long condensates) Explicit expressions for are available but cumbersome Fendley, Lesage, Saleur, J. Stat. Phys. 79:799 (1995)
26
Impurity in a Luttinger liquid
Expansion of the partition function in powers of g Partition function of the impurity contains correlation functions taken at the same point and at different times. Moments of interference experiments come from correlations functions taken at the same time but in different points. Euclidean invariance ensures that the two are the same
27
Relation between quantum impurity problem and interference of fluctuating condensates
Normalized amplitude of interference fringes Distribution function of fringe amplitudes Relation to the impurity partition function Distribution function can be reconstructed from using completeness relations for the Bessel functions
28
Bethe ansatz solution for a quantum impurity
can be obtained from the Bethe ansatz following Zamolodchikov, Phys. Lett. B 253:391 (91); Fendley, et al., J. Stat. Phys. 79:799 (95) Making analytic continuation is possible but cumbersome Interference amplitude and spectral determinant is related to the single particle Schroedinger equation Dorey, Tateo, J.Phys. A. Math. Gen. 32:L419 (1999) Bazhanov, Lukyanov, Zamolodchikov, J. Stat. Phys. 102:567 (2001) Spectral determinant
30
Evolution of the distribution function
Narrow distribution for Approaches Gumble distribution. Width Wide Poissonian distribution for
31
From interference amplitudes to conformal field theories
correspond to vacuum eigenvalues of Q operators of CFT Bazhanov, Lukyanov, Zamolodchikov, Comm. Math. Phys.1996, 1997, 1999 When K>1, is related to Q operators of CFT with c<0. This includes 2D quantum gravity, non-intersecting loop model on 2D lattice, growth of random fractal stochastic interface, high energy limit of multicolor QCD, … Yang-Lee singularity 2D quantum gravity, non-intersecting loops on 2D lattice
32
Studying coherent dynamics
of strongly interacting systems in interference experiments
33
Coupled 1d systems J Motivated by experiments of Schmiedmayer et al.
Interactions lead to phase fluctuations within individual condensates Tunneling favors aligning of the two phases Interference experiments measure only the relative phase
34
Coupled 1d systems J Conjugate variables Relative phase
Particle number imbalance Small K corresponds to strong quantum flcutuations
35
Quantum Sine-Gordon model
Hamiltonian Imaginary time action Quantum Sine-Gordon model is exactly integrable Excitations of the quantum Sine-Gordon model soliton antisoliton breather
36
Coherent dynamics of quantum Sine-Gordon model Motivated by experiments of Schmiedmayer et al.
J Prepare a system at t=0 Take to the regime of finite tunneling and let evolve for some time Measure amplitude of interference pattern
37
Coherent dynamics of quantum Sine-Gordon model
time Amplitude of interference fringes Oscillations or decay?
38
From integrability to coherent dynamics
At t=0 we have a state with for all This state can be written as a “squeezed” state Matrix can be constructed using connection to boundary SG model Calabrese, Cardy (2006); Ghoshal, Zamolodchikov (1994) Time evolution can be easily written Interference amplitude can be calculated using form factor approach Smirnov (1992), Lukyanov (1997)
39
Coherent dynamics of quantum Sine-Gordon model
J Prepare a system at t=0 Take to the regime of finite tunneling and let evolve for some time Measure amplitude of interference pattern
40
Coherent dynamics of quantum Sine-Gordon model
Amplitude of interference fringes time Amplitude of interference fringes shows oscillations at frequencies that correspond to energies of breater
41
Conclusions for part I Interference of fluctuating condensates can be used to probe correlation functions in one and two dimensional systems. Interference experiments can also be used to study coherent dynamics of interacting systems
42
Lecture II Measuring correlation functions
in interacting systems of cold atoms Lecture II Quantum noise interferometry in time of flight experiments 1. Time of flight experiments. Second order coherence in Mott states of spinless bosons 2. Detection of spin order in Mott states of atomic mixtures 3. Detection of fermion pairing Emphasis of these lectures: detection and characterization of many-body quantum states
43
Bose-Einstein condensation
Cornell et al., Science 269, 198 (1995) Ultralow density condensed matter system Interactions are weak and can be described theoretically from first principles
44
Superfluid to Insulator transition
Greiner et al., Nature 415:39 (2002) t/U Superfluid Mott insulator What if the ground state cannot be described by single particle matter waves? Current experiments are reaching such regimes. A nice example is the experiment by Markus and collaborators in Munich where cold bosons on an optical lattice were tuned across the SF-Mott transition. Explain experiment. SF well described by a wavefunction in which the zero momentum state is macroscopically occupied. Mott state is rather well described by definite RS occupations.
45
Time of flight experiments
Quantum noise interferometry of atoms in an optical lattice Second order coherence
46
Second order coherence in the insulating state of bosons
Second order coherence in the insulating state of bosons. Hanburry-Brown-Twiss experiment Theory: Altman et al., PRA 70:13603 (2004) Experiment: Folling et al., Nature 434:481 (2005)
47
Hanburry-Brown-Twiss stellar interferometer
48
Hanburry-Brown-Twiss interferometer
49
Second order coherence in the insulating state of bosons
Bosons at quasimomentum expand as plane waves with wavevectors First order coherence: Oscillations in density disappear after summing over Second order coherence: Correlation function acquires oscillations at reciprocal lattice vectors
50
Second order coherence in the insulating state of bosons
Second order coherence in the insulating state of bosons. Hanburry-Brown-Twiss experiment Theory: Altman et al., PRA 70:13603 (2004) Experiment: Folling et al., Nature 434:481 (2005)
51
Effect of parabolic potential on the second order coherence
Experiment: Spielman, Porto, et al., Theory: Scarola, Das Sarma, Demler, PRA (2006) Width of the correlation peak changes across the transition, reflecting the evolution of Mott domains
52
Width of the noise peaks
53
Interference of an array of independent condensates
Hadzibabic et al., PRL 93: (2004) Smooth structure is a result of finite experimental resolution (filtering)
54
Applications of quantum noise interferometry
in time of flight experiments Detection of spin order in Mott states of boson boson mixtures
55
Engineering magnetic systems using cold atoms in an optical lattice
See also lectures by A. Georges and I. Cirac in this school
56
Spin interactions using controlled collisions
Experiment: Mandel et al., Nature 425:937(2003) Theory: Jaksch et al., PRL 82:1975 (1999)
57
Two component Bose mixture in optical lattice
Example: Mandel et al., Nature 425:937 (2003) t t Two component Bose Hubbard model
58
Quantum magnetism of bosons in optical lattices
Kuklov and Svistunov, PRL (2003) Duan et al., PRL (2003) Ferromagnetic Antiferromagnetic
59
Exchange Interactions in Solids
antibonding bonding Kinetic energy dominates: antiferromagnetic state Coulomb energy dominates: ferromagnetic state
60
Two component Bose mixture in optical lattice
Two component Bose mixture in optical lattice. Mean field theory + Quantum fluctuations Altman et al., NJP 5:113 (2003) Hysteresis 1st order 2nd order line
61
Probing spin order of bosons
Correlation Function Measurements
62
Engineering exotic phases
Optical lattice in 2 or 3 dimensions: polarizations & frequencies of standing waves can be different for different directions YY ZZ Example: exactly solvable model Kitaev (2002), honeycomb lattice with Can be created with 3 sets of standing wave light beams ! Non-trivial topological order, “spin liquid” + non-abelian anyons …those has not been seen in controlled experiments
63
Applications of quantum noise interferometry
in time of flight experiments Detection of fermion pairing
64
Fermionic atoms in optical lattices
Pairing in systems with repulsive interactions. Unconventional pairing. High Tc mechanism
65
Fermionic atoms in a three dimensional optical lattice
Kohl et al., PRL 94:80403 (2005) See also lectures of T. Esslinger and W. Ketterle in this school
66
Fermions with repulsive interactions
Possible d-wave pairing of fermions
67
High temperature superconductors
Picture courtesy of UBC Superconductivity group High temperature superconductors Superconducting Tc 93 K Hubbard model – minimal model for cuprate superconductors P.W. Anderson, cond-mat/ After many years of work we still do not understand the fermionic Hubbard model
68
Positive U Hubbard model
Possible phase diagram. Scalapino, Phys. Rep. 250:329 (1995) Antiferromagnetic insulator D-wave superconductor
69
Second order correlations in the BCS superfluid
n(k) n(r) n(r’) k F k BCS BEC Expansion of atoms in TOF maps k into r
70
Momentum correlations in paired fermions
Greiner et al., PRL 94: (2005)
71
Fermion pairing in an optical lattice
Second Order Interference In the TOF images Normal State Superfluid State measures the Cooper pair wavefunction One can identify unconventional pairing
72
Simulation of condensed matter systems: Hubbard Model and high Tc superconductivity
Personal opinion: The fermionic Hubbard model contains 90% of the physics of cuprates. The remaining 10% may be crucial for getting high Tc superconductivity. Understanding Hubbard model means finding what these missing 10% are. Electron-phonon interaction? Mesoscopic structures (stripes)? Using cold atoms to go beyond “plain vanilla” Hubbard model a) Boson-Fermion mixtures: Hubbard model + phonons b) Inhomogeneous systems, role of disorder
73
Boson Fermion mixtures
Fermions interacting with phonons
74
Boson Fermion mixtures
See lectures by T. Esslinger and G. Modugno in this school BEC Bosons provide cooling for fermions and mediate interactions. They create non-local attraction between fermions Charge Density Wave Phase Periodic arrangement of atoms Non-local Fermion Pairing P-wave, D-wave, …
75
Boson Fermion mixtures
“Phonons” : Bogoliubov (phase) mode Effective fermion-”phonon” interaction Fermion-”phonon” vertex Similar to electron-phonon systems
76
Boson Fermion mixtures in 1d optical lattices
Cazalila et al., PRL (2003); Mathey et al., PRL (2004) Spin ½ fermions Spinless fermions
77
Boson Fermion mixtures in 2d optical lattices
Wang et al., PRA (2005) 40K -- 87Rb 40K -- 23Na (a) =1060nm =1060 nm (b) =765.5nm
78
Conclusions Interference of extended condensates is a powerful
tool for analyzing correlation functions in one and two dimensional systems Noise interferometry can be used to probe quantum many-body states in optical lattices
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.