Download presentation
Presentation is loading. Please wait.
Published byAnton Schreiber Modified over 6 years ago
1
Optimal Downlink OFDMA Subcarrier, Rate, and Power Allocation with Linear Complexity to Maximize Ergodic Weighted-Sum Rates *Ian C. Wong and Brian L. Evans The University of Texas at Austin IEEE Globecom 2007 Washington, D.C. *Dr. Wong is now with Freescale Semiconductor, Austin, TX
2
Orthogonal Frequency Division Multiple Access (OFDMA)
Used in IEEE d/e (now) and 3GPP-LTE (2009) Multiple users assigned different subcarriers Inherits advantages of OFDM Granular exploitation of diversity among users through channel state information (CSI) feedback User 1 frequency Base Station (Subcarrier and power allocation) . . . User M April 30, 2007
3
OFDMA Resource Allocation
How do we allocate K data subcarriers and total power P to M users to optimize some performance metric? E.g. IEEE e: K = 1536, M¼40 / sector Very active research area Difficult discrete optimization problem (NP-complete [Song & Li, 2005]) Brute force optimal solution: Search through MK subcarrier allocations and determine power allocation for each April 30, 2007
4
Summary of Contributions
Previous Research Our Contributions Formulation Instantaneous rate Unable to exploit time-varying wireless channels Ergodic rates Exploits time-varying nature of the wireless channel Previous Research Our Contributions Formulation Instantaneous rate Unable to exploit time-varying wireless channels Ergodic rate Exploits time-varying nature of the wireless channel Solution Constraint-relaxation One large constrained convex optimization problem Resort to sub-optimal heuristics (O(MK2) complexity) Dual optimization Multiple small optimization problems w/closed-form solutions Practically optimal with O(MK) complexity Previous Research Our Contributions Formulation Instantaneous rate Unable to exploit time-varying wireless channels Ergodic rate Exploits time-varying nature of the wireless channel Solution Constraint-relaxation One large constrained convex optimization problem Resort to sub-optimal heuristics (O(MK2) complexity) Dual optimization Multiple small optimization problems w/closed-form solutions Practically optimal with O(MK) complexity April 30, 2007
5
Ergodic Discrete Rate Maximization: Perfect CSI and CDI
Anticipative and infinite dimensional stochastic program Discrete Rate Function: Uncoded BER = 10-3 April 30, 2007
6
Dual Optimization Framework
“Multi-level fading inversion” wm=1,=1 “Slope-interval selection” April 30, 2007
7
PDF of Discrete Rate Dual
Derive the pdf of via order statistics April 30, 2007
8
Optimal Resource Allocation – Ergodic Discrete Rate with Perfect CSI
PDF of CNR O(INML) Initialization CNR Realization O(MKlog(L)) Runtime O(MK) O(K) M – No. of users; K – No. of subcarriers; L – No. of rate levels; I – No. of line-search iterations; N – No. of function evaluations for integration April 30, 2007
9
Performance Assessment - Duality Gap
April 30, 2007
10
Duality Gap Illustration
M=2 K=4 April 30, 2007
11
Simulation Results Channel Simulation OFDMA Parameters (3GPP-LTE)
April 30, 2007
12
Two-User Discrete Rate Region
SNR Erg. Rates Algorithm Inst. Rates Algorithm No. of function evaluations (N) 5 dB 47.91 - 10 dB 50.09 15 dB 53.73 No. of Iterations (I) 9.818 17.24 10.550 17.20 9.909 17.30 Relative Gap (x10-4) 0.8711 3.602 0.9507 1.038 0.5322 0.340 April 30, 2007
13
Sum Rate Versus Number of Users
Continuous Rate (ICASSP 2007) Discrete Rate April 30, 2007
14
Conclusion Developed a framework for OFDMA downlink resource allocation Based on dual optimization techniques Negligible duality gaps with linear complexity Ergodic discrete rates with perfect CSI Related work Continuous rates (capacity-based formulation) Imperfect CSI No CDI assumptions April 30, 2007
15
Questions? Relevant Journal Publications
[J1] I. C. Wong and B. L. Evans, "Optimal OFDMA Resource Allocation with Linear Complexity to Maximize Ergodic Rates," IEEE Trans. on Wireless Communications, accepted for publication [J2] I. C. Wong and B. L. Evans, "Optimal Resource Allocation in OFDMA Systems with Imperfect Channel Knowledge,“ IEEE Trans. on Communications., submitted Oct. 1, 2006, resubmitted Feb. 13, Relevant Conference Publications [C1] I. C. Wong and B. L. Evans, ``Optimal OFDMA Subcarrier, Rate, and Power Allocation for Ergodic Rates Maximization with Imperfect Channel Knowledge'', Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc., April 16-20, 2007, Honolulu, HI USA. [C2] I. C. Wong and B. L. Evans, ``Optimal OFDMA Resource Allocation with Linear Complexity to Maximize Ergodic Weighted Sum Capacity'', Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc., April 16-20, 2007, Honolulu, HI USA. [C3] I. C. Wong and B. L. Evans, ``OFDMA Resource Allocation for Ergodic Capacity Maximization with Imperfect Channel Knowledge'', Proc. IEEE Int. Global Communications Conf., November 26-30, 2007 Washington, DC USA, submitted. April 30, 2007
16
Backup Slides Notation Related Work Stoch. Prog. Models
C-Rate,P-CSI Dual objective Instantaneous Rate D-Rate,P-CSI Dual Objective PDF of D-Rate Dual Duality Gap D-Rate,I-CSI Rate/power functions Proportional Rates Proportional Rates - adaptive Summary of algorithms April 30, 2007
17
Discrete Rate Perfect CSI Dual Optimization
Discrete rate function is discontinuous Simple differentiation not feasible Given , for all , we have L candidate power allocation values Optimal power allocation: April 30, 2007
18
Notation Glossary April 30, 2007
19
Related Work OFDMA resource allocation with perfect CSI
Ergodic sum rate maximizatoin [Jang, Lee, & Lee, 2002] Weighted-sum rate maximization [Hoo, Halder, Tellado, & Cioffi, 2004] [Seong, Mohseni, & Cioffi, 2006] [Yu, Wang, & Giannakis, submitted] Minimum rate maximization [Rhee & Cioffi, 2000] Sum rate maximization with proportional rate constraints [Wong, Shen, Andrews, & Evans, 2004] [Shen, Andrews, & Evans, 2005] Rate utility maximization [Song & Li, 2005] Single-user systems with imperfect CSI Single-carrier adaptive modulation [Goeckel, 1999] [Falahati, Svensson, Ekman, & Sternad, 2004] Adaptive OFDM [Souryal & Pickholtz, 2001][Ye, Blum, & Cimini 2002] [Yao & Giannakis, 2004] [Xia, Zhou, & Giannakis, 2004] April 30, 2007
20
Stochastic Programming Models
[Ermoliev & Wets, 1988] Non-anticipative Decisions are made based only on the distribution of the random quantities Also known as non-adaptive models Anticipative Decisions are made based on the distribution and the actual realization of the random quantities Also known as adaptive models 2-Stage recourse models Non-anticipative decision for the 1st stage Recourse actions for the second stage based on the realization of the random quantities April 30, 2007
21
C-Rate P-CSI Dual Objective Derivation
Lagrangian: Dual objective Linearity of E[¢] Separability of objective Power a function of RV realization Exclusive subcarrier assignment m,k not independent but identically distributed across k April 30, 2007
22
Optimal Resource Allocation – Instantaneous Capacity with Perfect CSI
CNR Realization O(1) O(K) Runtime M – No. of users K – No. of subcarriers I – No. of line-search iterations N – No. of function evaluations for integration O(IMK) April 30, 2007
23
Related Work No Yes No* Yes** Yes*** April 30, 2007 Method Criteria
Max-min [Rhee & Cioffi,‘00] Sum Rate [Jang,Lee&Lee,’02] Proportional [Wong,Shen, Andrews& Evans,‘04] Max-utility [Song&Li, ‘05] Weighted-sum [Seong,Mehsini&Cioffi,’06] [Yu,Wang&Giannakis] Formulation Ergodic Rates No Yes No* Discrete Rates User prioritization Solution (algorithm) Practically optimal Yes** Linear complexity Yes*** Assumption (channel knowledge) Imperfect CSI Do not require CDI * Considered some form of temporal diversity by maximizing an exponentially windowed running average of the rate ** Independently developed a similar instantaneous continuous rate maximization algorithm *** Only for instantaneous continuous rate case, but was not shown in their papers April 30, 2007
24
Comparison with Previous Work
Method Criteria Proportional [Wong,Shen, Andrews& Evans,‘04] Max-utility [Song&Li, ‘05] Weighted [Seong,Mehsini&Cioffi,’06] [Yu,Wang& Giannakis] Weighted or Prop. D-Rate P-CSI Formulation Ergodic Rates No No* Yes Discrete Rates User prioritization Solution (algorithm) Practically optimal Linear complexity Yes** Assumption (channel knowledge) Imperfect CSI Do not require CDI * Considered some form of temporal diversity by maximizing an exponentially windowed running average of the rate ** Only for instantaneous continuous rate case, but was not shown in their papers April 30, 2007
25
Discrete Rate Perfect CSI Dual Optimization
Discrete rate function is discontinuous Simple differentiation not feasible Given , for all , we have L candidate power allocation values Optimal power allocation: April 30, 2007
26
OFDMA Signal Model Downlink OFDMA with K subcarriers and M users
Perfect time and frequency synchronization Free of inter-symbol and inter-carrier interference Received K-length vector for mth user at nth symbol Diagonal gain matrix Diagonal channel matrix Noise vector April 30, 2007
27
Statistical Wireless Channel Model
Time-domain channel Stationary and ergodic Complex normal and independent across taps i and users m Frequency-domain channel Stationary and ergodic Complex normal with correlated channel gains across subcarriers April 30, 2007
28
PDF of Discrete Rate Dual
Derive the pdf of April 30, 2007
29
Performance Assessment - Duality Gap
April 30, 2007
30
Duality Gap Illustration
M=2 K=4 April 30, 2007
31
Sum Power Discontinuity
K=4 April 30, 2007
32
BER/Power/Rate Functions
Impractical to impose instantaneous BER constraint when only partial CSI is available Find power allocation function that fulfills the average BER constraint for each discrete rate level Given the power allocation function for each rate level, the average rate can be computed Derived closed-form expressions for average BER, power, and average rate functions April 30, 2007
33
Closed-form Average Rate and Power
Power allocation function: Average rate function: Marcum-Q function April 30, 2007
34
Ergodic Sum Rate Maximization with Proportional Ergodic Rate Constraints
Developed adaptive algorithm without CDI Ergodic Sum Capacity Average Power Constraint Ergodic Rate for User m Proportionality Constants Allows more definitive prioritization among users Traces boundary of capacity region with specified ratio April 30, 2007
35
Dual Optimization Framework
Reformulated as weighted-sum rate problem with properly chosen weights Multiplier for power constraint Multiplier for rate constraint “Multi-level waterfilling with max-dual user selection” April 30, 2007
36
Projected Subgradient Search
Power constraint multiplier search Multiplier iterates Step sizes Projection Subgradients Derived pdfs for efficient 1-D Integrals Rate constraint multiplier vector search Per-user ergodic rate: April 30, 2007
37
Optimal Resource Allocation – Ergodic Proportional Rate with Perfect CSI
Initialization PDF of CNR O(INM2) Runtime CNR Realization O(MK) O(MK) M – No. of users K – No. of subcarriers I– No. of subgradient search iterations N – No. of function evaluations for integration O(K) April 30, 2007
38
Adaptive Algorithms for Rate Maximization Without Channel Distribution Information (CDI)
Previous algorithms assumed perfect CDI Distribution identification and parameter estimation required in practice More suitable for offline processing Adaptive algorithms without CDI Low complexity and suitable for online processing Based on stochastic approximation methods April 30, 2007
39
Solving the Dual Problem Using Stochastic Approximation
Power constraint multiplier search Subgradient approximates Averaging time constant Multiplier iterates Step sizes Subgradient Averaging Projection Subgradients Rate constraint multiplier vector search Projected subgradient iterations across time with subgradient averaging - Proved convergence to optimal multipliers with probability one April 30, 2007
40
Subgradient Approximates
“Instantaneous multi-level waterfilling with max-dual user selection” April 30, 2007
41
Optimal Resource Allocation- Ergodic Proportional Rate without CDI
Weighted-sum, Discrete Rate and Partial CSI are special cases of this algorithm April 30, 2007
42
Two-User Capacity Region
OFDMA Parameters (3GPP-LTE) 1 = (0.1 increments) 2 = 1-1 April 30, 2007
43
Evolution of the Iterates for 1=0.1 and 2 = 0.9
User Rates Rate constraint Multipliers Power Power constraint Multipliers l April 30, 2007
44
Summary of the Resource Allocation Algorithms
Initialization Complexity Per-symbol Complexity Relative Gap Order of Magnitude Sum-Rate at w=[.5,.5], SNR=5 dB WS Cont. Rates Perfect CSI – Ergodic O(INM) O(MK) 10-6 2.40 WS Cont. Rates Perfect CSI – Inst. - O(IMK) 10-8 2.39 WS Disc. Rates Perfect CSI – Ergodic O(INML) O(MKlogL) 10-5 1.20 WS Disc. Rates Perfect CSI – Inst. O(IMKlogL) 10-4 1.10 WS Cont. Rates Partial CSI O(MKI (Ip+Ic)) 2.37 WS Disc. Rates Partial CSI O(MK(I+L)) 1.09 Prop. Cont. Rates Perfect CSI with CDI - Ergodic O(INM2) Prop. Cont. Rates Perfect CSI without CDI - Ergodic April 30, 2007
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.