Download presentation
Presentation is loading. Please wait.
1
Chapman-Kolmogorov Equations
𝑃 0𝑗 (𝑛−𝑚) 𝑃 𝑖0 (𝑚) 𝑃 𝑖𝑗 (𝑛) = 𝑃 𝑖0 (𝑚) 𝑃 0𝑗 (𝑛−𝑚) + 𝑃 𝑖1 (𝑚) 𝑃 1𝑗 (𝑛−𝑚) +…+ 𝑃 𝑖𝑚 (𝑚) 𝑃 𝑚𝑗 (𝑛−𝑚) = 𝑘=0 𝑀 𝑃 𝑖𝑘 (𝑚) 𝑃 𝑘𝑗 (𝑛−𝑚) ex: (3 states) 𝑃 12 (2) = 𝑃 10 𝑃 12 + 𝑃 11 𝑃 12 + 𝑃 12 𝑃 22 𝑃 00 𝑃 01 𝑃 02 𝑃 10 𝑃 11 𝑃 12 𝑃 20 𝑃 21 𝑃 𝑃 00 𝑃 01 𝑃 02 𝑃 10 𝑃 11 𝑃 12 𝑃 20 𝑃 21 𝑃 22 = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2
Chapman-Kolmogorov Equations (continued)
3
n-step Transition Matrices for the Weather Example
4
n-step Transition Matrices for the Weather Example (continued)
5
n-step Transition Matrices for the Inventory Example
6
Unconditional State Probabilities
𝑃 𝑋 2 =3 =𝑃 𝑋 0 =0 P 03 (2) +𝑃 𝑋 0 =1 P 13 (2) +𝑃 𝑋 0 =2 P 23 (2) +𝑃 𝑋 0 =3 P 33 (2) =1 ‧ P 33 (2) = 0.165
7
Classification of States of a Markov Chain
Accessible => i → j 2 → 3 3→2
8
Classification of States of a Markov Chain (continued)
9
Classification of States of a Markov Chain (continued)
I ↔ j , j ↔ k , I ↔ k Weather 0,1 inventory{ 0,1,2,3} (在2 states後) Gambling 1,
10
Recurrent States and Transient States
Gambling : 3(X) ↗ 2 ↘ 1
11
Recurrent States and Transient States (continued)
Gambling:state 0,3
12
Recurrent States and Transient States (continued)
13
Recurrent States and Transient States (continued)
1 2 3 4
14
Periodicity Properties
$2->$1,$1->$2 Stock ↓↑
15
Periodicity Properties (continued)
Ergodic =Recurrent + aperiopdic
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.