Presentation is loading. Please wait.

Presentation is loading. Please wait.

Math 181 11.2 –Series.

Similar presentations


Presentation on theme: "Math 181 11.2 –Series."β€” Presentation transcript:

1 Math 181 11.2 –Series

2 A __________ is the ______ of the terms of a sequence
A __________ is the ______ of the terms of a sequence. Sequence: π‘Ž 1 , π‘Ž 2 , π‘Ž 3 , …, π‘Ž 𝑛 , … Series: π‘Ž 1 + π‘Ž 2 + π‘Ž 3 +…+ π‘Ž 𝑛 +… 𝑛=1 ∞ π‘Ž 𝑛

3 A __________ is the ______ of the terms of a sequence
A __________ is the ______ of the terms of a sequence. Sequence: π‘Ž 1 , π‘Ž 2 , π‘Ž 3 , …, π‘Ž 𝑛 , … Series: π‘Ž 1 + π‘Ž 2 + π‘Ž 3 +…+ π‘Ž 𝑛 +… 𝑛=1 ∞ π‘Ž 𝑛 series

4 A __________ is the ______ of the terms of a sequence
A __________ is the ______ of the terms of a sequence. Sequence: π‘Ž 1 , π‘Ž 2 , π‘Ž 3 , …, π‘Ž 𝑛 , … Series: π‘Ž 1 + π‘Ž 2 + π‘Ž 3 +…+ π‘Ž 𝑛 +… 𝑛=1 ∞ π‘Ž 𝑛 series sum

5 A __________ is the ______ of the terms of a sequence
A __________ is the ______ of the terms of a sequence. Sequence: π‘Ž 1 , π‘Ž 2 , π‘Ž 3 , …, π‘Ž 𝑛 , … Series: π‘Ž 1 + π‘Ž 2 + π‘Ž 3 +…+ π‘Ž 𝑛 +… 𝑛=1 ∞ π‘Ž 𝑛 series sum

6 A __________ is the ______ of the terms of a sequence
A __________ is the ______ of the terms of a sequence. Sequence: π‘Ž 1 , π‘Ž 2 , π‘Ž 3 , …, π‘Ž 𝑛 , … Series: π‘Ž 1 + π‘Ž 2 + π‘Ž 3 +…+ π‘Ž 𝑛 +… 𝑛=1 ∞ π‘Ž 𝑛 series sum

7 A __________ is the ______ of the terms of a sequence
A __________ is the ______ of the terms of a sequence. Sequence: π‘Ž 1 , π‘Ž 2 , π‘Ž 3 , …, π‘Ž 𝑛 , … Series: π‘Ž 1 + π‘Ž 2 + π‘Ž 3 +…+ π‘Ž 𝑛 +… 𝑛=1 ∞ π‘Ž 𝑛 series sum

8 What does the following series add up to
What does the following series add up to? …+ 1 2 𝑛 +… 𝑛=1 ∞ 1 2 𝑛 Let’s try adding the terms one at a time:

9 What we just calculated are called the _____________ of the series
What we just calculated are called the _____________ of the series. In general, they look like: 𝑠 1 = π‘Ž 1 𝑠 2 = π‘Ž 1 + π‘Ž 2 𝑠 3 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 𝑠 4 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 + π‘Ž 4 … 𝑠 𝑛 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 + π‘Ž 4 +…+ π‘Ž 𝑛 ( 𝑠 𝑛 = π‘˜=1 𝑛 π‘Ž π‘˜ )

10 partial sums What we just calculated are called the _____________ of the series. In general, they look like: 𝑠 1 = π‘Ž 1 𝑠 2 = π‘Ž 1 + π‘Ž 2 𝑠 3 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 𝑠 4 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 + π‘Ž 4 … 𝑠 𝑛 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 + π‘Ž 4 +…+ π‘Ž 𝑛 ( 𝑠 𝑛 = π‘˜=1 𝑛 π‘Ž π‘˜ )

11 partial sums What we just calculated are called the _____________ of the series. In general, they look like: 𝑠 1 = π‘Ž 1 𝑠 2 = π‘Ž 1 + π‘Ž 2 𝑠 3 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 𝑠 4 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 + π‘Ž 4 … 𝑠 𝑛 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 + π‘Ž 4 +…+ π‘Ž 𝑛 ( 𝑠 𝑛 = π‘˜=1 𝑛 π‘Ž π‘˜ )

12 partial sums What we just calculated are called the _____________ of the series. In general, they look like: 𝑠 1 = π‘Ž 1 𝑠 2 = π‘Ž 1 + π‘Ž 2 𝑠 3 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 𝑠 4 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 + π‘Ž 4 … 𝑠 𝑛 = π‘Ž 1 + π‘Ž 2 + π‘Ž 3 + π‘Ž 4 +…+ π‘Ž 𝑛 ( 𝑠 𝑛 = π‘˜=1 𝑛 π‘Ž π‘˜ )

13 The partial sums 𝑠 1 , 𝑠 2 , 𝑠 3 , 𝑠 4 ,… make a sequence 𝑠 𝑛 that will either converge or diverge. If 𝑠 𝑛 converges to 𝐿, then we say 𝑛=1 ∞ π‘Ž 𝑛 _______________ to 𝐿. If 𝑠 𝑛 diverges, then we say 𝑛=1 ∞ π‘Ž 𝑛 _______________ .

14 The partial sums 𝑠 1 , 𝑠 2 , 𝑠 3 , 𝑠 4 ,… make a sequence 𝑠 𝑛 that will either converge or diverge. If 𝑠 𝑛 converges to 𝐿, then we say 𝑛=1 ∞ π‘Ž 𝑛 _______________ to 𝐿. If 𝑠 𝑛 diverges, then we say 𝑛=1 ∞ π‘Ž 𝑛 _______________ . converges

15 The partial sums 𝑠 1 , 𝑠 2 , 𝑠 3 , 𝑠 4 ,… make a sequence 𝑠 𝑛 that will either converge or diverge. If 𝑠 𝑛 converges to 𝐿, then we say 𝑛=1 ∞ π‘Ž 𝑛 _______________ to 𝐿. If 𝑠 𝑛 diverges, then we say 𝑛=1 ∞ π‘Ž 𝑛 _______________ . converges diverges

16 We can visualize the partial sums on a coordinate system, with 𝑛 on the π‘₯-axis, and 𝑠 𝑛 on the 𝑦-axis.

17 Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________.
… is an example of a _______________, which generally has the form: 𝒂+𝒂𝒓+𝒂 𝒓 𝟐 +𝒂 𝒓 πŸ‘ +…+𝒂 𝒓 π’βˆ’πŸ +… 𝒏=𝟏 ∞ 𝒂 𝒓 π’βˆ’πŸ Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________.

18 Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________.
… is an example of a _______________, which generally has the form: 𝒂+𝒂𝒓+𝒂 𝒓 𝟐 +𝒂 𝒓 πŸ‘ +…+𝒂 𝒓 π’βˆ’πŸ +… 𝒏=𝟏 ∞ 𝒂 𝒓 π’βˆ’πŸ Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________. geometric series

19 Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________.
… is an example of a _______________, which generally has the form: 𝒂+𝒂𝒓+𝒂 𝒓 𝟐 +𝒂 𝒓 πŸ‘ +…+𝒂 𝒓 π’βˆ’πŸ +… 𝒏=𝟏 ∞ 𝒂 𝒓 π’βˆ’πŸ Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________. geometric series

20 Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________.
… is an example of a _______________, which generally has the form: 𝒂+𝒂𝒓+𝒂 𝒓 𝟐 +𝒂 𝒓 πŸ‘ +…+𝒂 𝒓 π’βˆ’πŸ +… 𝒏=𝟏 ∞ 𝒂 𝒓 π’βˆ’πŸ Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________. geometric series

21 Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________.
… is an example of a _______________, which generally has the form: 𝒂+𝒂𝒓+𝒂 𝒓 𝟐 +𝒂 𝒓 πŸ‘ +…+𝒂 𝒓 π’βˆ’πŸ +… 𝒏=𝟏 ∞ 𝒂 𝒓 π’βˆ’πŸ Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________. geometric series common ratio

22 Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________.
… is an example of a _______________, which generally has the form: 𝒂+𝒂𝒓+𝒂 𝒓 𝟐 +𝒂 𝒓 πŸ‘ +…+𝒂 𝒓 π’βˆ’πŸ +… 𝒏=𝟏 ∞ 𝒂 𝒓 π’βˆ’πŸ Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________. geometric series common ratio

23 Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________.
… is an example of a _______________, which generally has the form: 𝒂+𝒂𝒓+𝒂 𝒓 𝟐 +𝒂 𝒓 πŸ‘ +…+𝒂 𝒓 π’βˆ’πŸ +… 𝒏=𝟏 ∞ 𝒂 𝒓 π’βˆ’πŸ Above, π‘Žβ‰ 0 if the first term, and π‘Ÿ is called the ______________. geometric series common ratio

24 When does a geometric series 𝒏=𝟏 ∞ 𝒂 𝒓 π’βˆ’πŸ converge or diverge?

25 𝑛=1 ∞ π‘Ž π‘Ÿ π‘›βˆ’1 =π‘Ž+π‘Žπ‘Ÿ+π‘Ž π‘Ÿ 2 +… converges to π‘Ž 1βˆ’π‘Ÿ if π‘Ÿ <1 diverges if π‘Ÿ β‰₯1

26 Ex 1. Find the sum of 5βˆ’ βˆ’ …

27 Ex 1. Find the sum of 5βˆ’ βˆ’ …

28 Ex 2. Express 2.3 17 =2.317171717… as the ratio of two integers.

29 β€œTelescoping Sums” Ex 3. Find the sum of 𝑛=1 ∞ 1 𝑛 𝑛+1 .

30 Theorem: If 𝑛=1 ∞ π‘Ž 𝑛 converges, then lim π‘›β†’βˆž π‘Ž 𝑛 =0
Theorem: If 𝑛=1 ∞ π‘Ž 𝑛 converges, then lim π‘›β†’βˆž π‘Ž 𝑛 =0. ex: 𝑛=1 ∞ 1 𝑛 𝑛+1 converges, so lim π‘›β†’βˆž 1 𝑛 𝑛+1 =0.

31 Theorem: If 𝑛=1 ∞ π‘Ž 𝑛 converges, then lim π‘›β†’βˆž π‘Ž 𝑛 =0
Theorem: If 𝑛=1 ∞ π‘Ž 𝑛 converges, then lim π‘›β†’βˆž π‘Ž 𝑛 =0. ex: 𝑛=1 ∞ 1 𝑛 𝑛+1 converges, so lim π‘›β†’βˆž 1 𝑛 𝑛+1 =0.

32 Test for Divergence: If lim π‘›β†’βˆž π‘Ž 𝑛 does not exist or if lim π‘›β†’βˆž π‘Ž 𝑛 β‰ 0, then 𝑛=1 ∞ π‘Ž 𝑛 diverges. Ex 4. Does 𝑛=1 ∞ 𝑛 2 converge or diverge? Ex 5. Does 𝑛=1 ∞ 𝑛 2 5 𝑛 2 +4 converge or diverge? Ex 6. Does 𝑛=1 ∞ βˆ’1 𝑛+1 converge or diverge?

33 Test for Divergence: If lim π‘›β†’βˆž π‘Ž 𝑛 does not exist or if lim π‘›β†’βˆž π‘Ž 𝑛 β‰ 0, then 𝑛=1 ∞ π‘Ž 𝑛 diverges. Ex 4. Does 𝑛=1 ∞ 𝑛 2 converge or diverge? Ex 5. Does 𝑛=1 ∞ 𝑛 2 5 𝑛 2 +4 converge or diverge? Ex 6. Does 𝑛=1 ∞ βˆ’1 𝑛+1 converge or diverge?

34 Note: Caution. Sometimes lim π‘›β†’βˆž π‘Ž 𝑛 =0, but 𝑛=1 ∞ π‘Ž 𝑛 still diverges
Note: Caution! Sometimes lim π‘›β†’βˆž π‘Ž 𝑛 =0, but 𝑛=1 ∞ π‘Ž 𝑛 still diverges! ex: Let’s show that even though lim π‘›β†’βˆž 1 𝑛 =0, 𝑛=1 ∞ 1 𝑛 diverges:

35 Note: Caution. Sometimes lim π‘›β†’βˆž π‘Ž 𝑛 =0, but 𝑛=1 ∞ π‘Ž 𝑛 still diverges
Note: Caution! Sometimes lim π‘›β†’βˆž π‘Ž 𝑛 =0, but 𝑛=1 ∞ π‘Ž 𝑛 still diverges! ex: Let’s show that even though lim π‘›β†’βˆž 1 𝑛 =0, 𝑛=1 ∞ 1 𝑛 diverges:

36 Notes: π‘Ž 𝑛 = 𝑛=1 ∞ π‘Ž 𝑛 If π‘Ž 𝑛 and 𝑏 𝑛 converge, then 1
Notes: π‘Ž 𝑛 = 𝑛=1 ∞ π‘Ž 𝑛 If π‘Ž 𝑛 and 𝑏 𝑛 converge, then 1. ( π‘Ž 𝑛 Β± 𝑏 𝑛 ) = π‘Ž 𝑛 Β± 𝑏 𝑛 2. π‘˜ π‘Ž 𝑛 =π‘˜ π‘Ž 𝑛 (π‘˜ is a constant)

37 Notes: π‘Ž 𝑛 = 𝑛=1 ∞ π‘Ž 𝑛 If π‘Ž 𝑛 and 𝑏 𝑛 converge, then 1
Notes: π‘Ž 𝑛 = 𝑛=1 ∞ π‘Ž 𝑛 If π‘Ž 𝑛 and 𝑏 𝑛 converge, then 1. ( π‘Ž 𝑛 Β± 𝑏 𝑛 ) = π‘Ž 𝑛 Β± 𝑏 𝑛 2. π‘˜ π‘Ž 𝑛 =π‘˜ π‘Ž 𝑛 (π‘˜ is a constant)

38 Ex 7. Does 𝑛=1 ∞ 3 𝑛 + 2 𝑛 5 𝑛 converge or diverge
Ex 7. Does 𝑛=1 ∞ 3 𝑛 + 2 𝑛 5 𝑛 converge or diverge? If it converges, find its sum.

39 Ex 8. Does 𝑛=1 ∞ 4 2 𝑛 converge or diverge
Ex 8. Does 𝑛=1 ∞ 𝑛 converge or diverge? If it converges, find its sum.


Download ppt "Math 181 11.2 –Series."

Similar presentations


Ads by Google