Download presentation
Presentation is loading. Please wait.
1
Preliminaries: Distributions
Probabilistic Graphical Models Introduction Preliminaries: Distributions
2
Joint Distribution Intelligence (I) Difficulty (D) Grade (G) I D G
Prob. i0 d0 g1 0.126 g2 0.168 g3 d1 0.009 0.045 i1 0.252 0.0224 0.0056 0.06 0.036 0.024 Intelligence (I) i0 (low), i1 (high), Difficulty (D) d0 (easy), d1 (hard) Grade (G) g1 (A), g2 (B), g3 (C) Probability space Parameters and independent parameters
3
Conditioning condition on g1 I D G Prob. i0 d0 g1 0.126 g2 0.168 g3 d1
0.009 0.045 i1 0.252 0.0224 0.0056 0.06 0.036 0.024 condition on g1
4
Conditioning: Reduction
Prob. i0 d0 g1 0.126 d1 0.009 i1 0.252 0.06
5
Conditioning: Renormalization
Prob. i0 d0 g1 0.126 d1 0.009 i1 0.252 0.06 I D Prob. i0 d0 0.282 d1 0.02 i1 0.564 0.134 P(I, D, g1) P(I, D | g1) 0.447 0.447
6
Marginalization Marginalize I I D Prob. i0 d0 0.282 d1 0.02 i1 0.564
0.134 D Prob. d0 0.846 d1 0.154
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.