Download presentation
Presentation is loading. Please wait.
1
Algebraic Property Testing
Madhu Sudan MIT CSAIL Joint work with Tali Kaufman (IAS).
2
Classical Data Processing
Big computers Small Data
3
Modern Data Processing
Small computers Enormous Data
4
Needs new algorithmic paradigm
Imbalance not a question of technology : I.e., not because computing speeds are growing less fast than memory capacity. Imbalance is a function of expectations: E.g., Users expect to be able to “analyze” the WWW, using a laptop. But WWW includes millions other such laptops. Need: Sublinear time algorithms That “estimate” rather than “compute” some given function.
5
Property Testing D a t : f ! R f g i v e n b y a s m p l o x P r o p e
f(x) P r o p e t y : F f D ! R g q - u e r y T s t : S a m p l f b o x i . A c e p t s i f 2 F Hope: I m p o s i b l e w t h q j D R e j c t s i f 6 2 F R e j c t s i f - a r o m F f - c l o s e t F i 9 g 2 . P r x D [ ( ) 6 = ]
6
Property Testing D a t : f ! R f g i v e n b y a s m p l o x P r o p e
f(x) P r o p e t y : F f D ! R g q - u e r y T s t : S a m p l f b o x i . A c e p t s i f 2 F Hope: I m p o s i b l e w t h q j D R e j c t s i f 6 2 F R e j c t s i f - a r o m F f - c l o s e t F i 9 g 2 . P r x D [ ( ) 6 = ]
7
Example: Linearity Testing
f : F n 2 ! g [Blum, Luby, Rubinfeld ’90] Property = Linearity Test: Non-trivial analysis: D = F n 2 ; R F = f j 8 x ; y ( ) + g P i c k r a n d o m x ; y A c e p t i f ( x ) + y = F f - a r o m F ) e j c t w . p 2 = 9
8
Example: Linearity Testing
f : F n 2 ! g [Blum, Luby, Rubinfeld ’90] Property = Linearity Test: Non-trivial analysis: D = F n 2 ; R F = f j 8 x ; y ( ) + g P i c k r a n d o m x ; y A c e p t i f ( x ) + y = F f - a r o m F ) e j c t w . p 2 = 9
9
Property Testing: Abbreviated History
Prehistoric: Statistical sampling E.g., “Is mean/median at least X”. Linearity Testing [BLR’90], Multilinearity Testing [Babai, Fortnow, Lund ’91]. Graph/Combinatorial Property Testing [Goldreich, Goldwasser, Ron ’94]. E.g., Is a graph “close” to being 3-colorable. Algebraic Testing [GLRSW,RS,FS,AKKLR,KR,JPSZ] Is multivariate function a polynomial (of bounded degree). Graph Testing [Alon-Shapira, AFNS, Borgs et al.] Characterizes graph properties that are testable.
10
This Talk I f F µ ! i s c l o e d u r a t , ± m h y z b .
Abstracting Algebraic Property Testing Generic Theorem: Motivations: Generalizes, unifies previous algebraic works Initiates systematic study of testability for algebraic properties Sheds light on testing and invariances of properties. I f F n ! i s c l o e d u r a t , m h y z b .
11
Property Testing vs. “Statistics”
Classical Statistics (Mean, Median, Quantiles): Also run in sublinear time. So what’s special about “linearity testing”? Classical statistics work on “symmetric” properties: Linear functions closed under much smaller group of permutations: Simlarly, graph properties have nice invariances F c l o s e d u n r a b i t y p m D . F c l o s e d u n r i a m p L : 2 ! j D l o g s u c h m a p v . !
12
Is testing a corollary of invariance?
Example 1: Invariant group trivial. Testing easy. Example 2: Invariant group still trivial. No O(1) local tests. Conclusion: Testing not necessarily a consequence of invariance. If we believe this to be the case for the linearity test, must prove it!! D = R ; F 1 f I d j ( x ) g D = f 1 ; : n g R 9 F 2 j x < y ) (
13
Is testing a corollary of invariance?
Example 1: Invariant group trivial. Testing easy. Example 2: Invariant group still trivial. No O(1) local tests. Conclusion: Testing not necessarily a consequence of invariance. If we believe this to be the case for the linearity test, must prove it!! D = R ; F 1 f I d j ( x ) g D = f 1 ; : n g R 9 F 2 j x < y ) (
14
Part II: Formal Definitions & Results
15
Linear Invariance Examples: F i s L n e a r I v t f ² l u b p c ( o )
j ) 2 d : ! ( A n e I v a r i c d s m l y ) L i n e a r f u c t o s , - v p l y m d g h F 1 + 2
16
Testing, constraints, characterizations
S u p o s e F h a k - q r y t . T h e n m b r s o f F a t i y k - l c . C o n s t r a i : = ( x 1 ; k 2 F u b p c e V ) 8 f . , h E . g , i n t h e l a r c s : f ( ) + = C = ( ; + V f 1 g ) C h a r c t e i z o n : = f 1 ; m g 2 F , s
17
(Linear-Invariant) Algebraic Characterizations
Characterizations require many constraints! Linear (affine) invariance turns one constraint into many. (Linearity) Example: C = ( x 1 ; : k V ) c o n s t r a i d L l e . ( L ) ; + V c o n s t r a i f l e y A l g e b r a i c C h t z o n : S s . f L j ( ) F
18
Main Theorems T h e o r m : F a ± n - i v t d s k l c g b z , p q u y
. U n i e s , m p l a d x t r v o u g b c T h e o r m : F a n - i v t d s k l c ) f ( g b z .
19
X Pictorially F o r a ± n e - i v t p s k - q u e r y t s k ! k - l o
Theorem 1 By defn. k ! k - l o c a h r t e i z n k - l o c a g . h r By defn. Theorem 2 k ! f F ( ) X k - l o c a n s t r i k ! (with Grigorescu)
20
X Pictorially F o r a ± n e - i v t p s k - q u e r y t s k ! k - l o
Theorem 1 By defn. k ! k - l o c a h r t e i z n k - l o c a g . h r By defn. Theorem 2 k ! f F ( ) X k - l o c a n s t r i k ! (with Grigorescu)
21
Part III: BLR (and our) analysis
22
Step 1: Prove “most likely” is overwhelming majority.
BLR Analysis: Outline H a v e f s . t P r x ; y [ ( ) + 6 = ] < 2 9 W n o h w c l m g F D e n g ( x ) = m o s t l i k y f + . I f c l o s e t F h n g w i b a d . B u t i f n o c l s e ? g m a y v b q d ! S t e p s : S t e p : P r o v f c l s g Step 1: Prove “most likely” is overwhelming majority. S t e p 2 : P r o v h a g i s n F .
23
BLR Analysis: Step 0 ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . C l a
[ f ( ) 6 = g ] 2 L e t B = f x j P r y [ ( ) 6 + ] 1 2 g P r x ; y [ l i n e a t s j c 2 B ] 1 ) P r x [ 2 B ] I f x 6 2 B t h e n ( ) = g
24
BLR Analysis: Step 1 V o t e ( y ) ² D e ¯ n g ( x ) = m o s t l i k y
f + . S u p o s e f r m x , 9 t w q a l y i k v . P b n d h c ? I f w e i s h t o g l n a r , d u c . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] 4
25
BLR Analysis: Step 1 V o t e ( y ) ² D e ¯ n g ( x ) = m o s t l i k y
f + . S u p o s e f r m x , 9 t w q a l y i k v . P b n d h c ? I f w e i s h t o g l n a r , d u c . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] 4
26
BLR Analysis: Step 1 V o t e ( y ) ² D e ¯ n g ( x ) = m o s t l i k y
f + . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] 4 f ( y ) f ( x + y ) ? f ( z ) f ( y + z ) f ( y + 2 z ) f ( x + z ) f ( 2 y + z ) f ( x + 2 y z ) P r o b . R w / c l u m n s - z e
27
BLR Analysis: Step 1 V o t e ( y ) ² D e ¯ n g ( x ) = m o s t l i k y
f + . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] 4 f ( y ) f ( x + y ) ? f ( z ) f ( y + z ) f ( y + 2 z ) f ( x + z ) f ( 2 y + z ) f ( x + 2 y z ) P r o b . R w / c l u m n s - z e
28
BLR Analysis: Step 2 (Similar)
f < 1 2 , t h n 8 x ; y g ( ) + = P r o b . R w / c l u m n s - z e 4 g ( x ) g ( y ) g ( x + y ) f ( z ) f ( y + z ) f ( y + 2 z ) f ( x + z ) f ( 2 y + z ) f ( x + 2 y z )
29
Step 1: Prove “most likely” is overwhelming majority.
Our Analysis: Outline f s . t P r L [ h ( x 1 ) ; : k i 2 V ] = D e n g ( x ) = t h a m i z s P r f L j 1 [ ; 2 : k V ] S t e p s : S t e p : P r o v f c l s g Step 1: Prove “most likely” is overwhelming majority. S t e p 2 : P r o v h a g i s n F .
30
Step 1: Prove “most likely” is overwhelming majority.
Our Analysis: Outline f s . t P r L [ h ( x 1 ) ; : k i 2 V ] = D e n g ( x ) = t h a m i z s P r f L j 1 [ ; 2 : k V ] S a m e s b f o r S t e p s : S t e p : P r o v f c l s g Step 1: Prove “most likely” is overwhelming majority. S t e p 2 : P r o v h a g i s n F .
31
? Matrix Magic? V o t e ( L ) ² D e ¯ n g ( x ) = ® t h a m i z s P r
f L j 1 [ ; 2 : k V ] L e m a : 8 x , P r ; K [ V o t ( ) 6 = ] 2 k 1 L ( x 2 ) L ( x k ) x K ( x 2 ) ? . K ( x k )
32
? Matrix Magic? L ( x ) ¢ L ( x ) x K ( x ) . K ( x ) ² W a n t m r k
2 ) L ( x k ) x K ( x 2 ) ? . K ( x k ) W a n t m r k e d o w s b c i . S u p o s e x 1 ; : ` l i n a r y d t h m .
33
Matrix Magic? ` L ( x ) ¢ L ( x ) x K ( x ) ` . K ( x ) ² S u p o s e
Fill with random entries Matrix Magic? Fill so as to make constraints Linear algebra implies final columns are also constraints. ` L ( x 2 ) L ( x k ) x K ( x 2 ) ` . K ( x k ) S u p o s e x 1 ; : ` l i n a r y d t h m .
34
Matrix Magic? ` L ( x ) ¢ L ( x ) x K ( x ) ` . K ( x ) ² S u p o s e
Fill with random entries Matrix Magic? Fill so as to make constraints Linear algebra implies final columns are also constraints. ` L ( x 2 ) L ( x k ) x K ( x 2 ) ` . K ( x k ) S u p o s e x 1 ; : ` l i n a r y d t h m .
35
Conclusions Linear/Affine-invariant properties testable if they have local constraints. Gives clean generalization of linearity and low-degree tests. Future work: What kind of invariances lead to testability (from characterizations)?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.