Download presentation
Presentation is loading. Please wait.
1
Case 5.1 Old Dominion Energy
Berg Bjarne Bong-Keun Jeong
2
Background Old Dominion Energy (ODE) – A gas trading company
Currently has 100,000 cf of gas in Katy Customers in Joliet – 35,000 cf with $4.35 per thousands Customers in Leidy – 60,000 cf with $4.63 per thousands
3
y = available transmission capacity of the arc in thousands
Wharton 1 Waha 2 Kiowa 6 Joliet 8 Maumee 10 Leidy 11 Carthage 4 Katy 3 Henry 5 Lebanon 9 Perryville 7 (.21, 10) (.35, 25) (.28, 15) (.52, 25) (.53, 25) (.33, 15) (.47, 30) (.22, 15) (.48, 20) (.45, 20) (.35, 15) (.47, 25) (.28, 20) (.51, 15) (.42, 30) (.39, 15) (.30, 30) (.32, 20) (.52, 15) - (x, y) x = the cost per thousand cubic feet (cf) of transporting gas along the arc y = available transmission capacity of the arc in thousands - Arcs in the network are bidirectional (either direction)
4
MAXIMIZE PROFITS:: 4.35JK EK WA WK AW AK AI KW KA KC KH IA IC IJ CK CI CJ CL - 0.3CP HK HP JI JC JL JP JM LC LJ LP LM LE - 0.3PC PH PJ PL PE MJ ML ME EL EP EM
5
Simplifying of the problem
A quick review of the network can simplify the problem. We have 100 (thousands) cubic feets of gas at Katy, but notice the obvious network constraints: 1) From Katy we can ship no more than 80 ( ) 2) However, we cannot ship more that 70 past 3 'bottlenecks' ( ). So we can either use 'brute force or we can simplify the demand requirements (max 70)
6
Defining the network 1) JK + EK <= 70 2) JK <= 35
Simplified the problem and added 2 archs from Leidy and Joliet to Katy, but Joliet does not want more than 35 1) JK + EK <= 70 2) JK <= 35 3) EK - KH - KC - KA - KW <= 0 4) JK - KH - KC - KA - KW <= 0 5) AW + KW - WA - WK = 0 6) WA + KA + IA - AW - AK - AI = 0 7) WK + AK + CK + HK + LK + JK - KW - KA - KC - KH >= -100 8) AI + CI + JI - IA - IC - IJ = 0 9) KC + IC + JC + LC + PC - CK - CI - CJ - CL - CP = 0 10) KH + PH - HK - HP = 0 11) JK + JI + JC + JP + JL + JM - IJ - CJ - PJ - LJ - MJ = 0 12) CL + JL + PL + ML + EL - LC - LJ - LP - LM - LE = 0 13) CP + HP + JP + LP + EP - PC - PH - PJ - PL - PE = 0 14) JM + LM + EM - MJ - ML - ME = 0 15) EK + EL +EP + EM - LE - PE - ME =0 This is what causes the ‘flow to move’ Cannot send more than we have in Katy (not a problem anyway in this case, since this time, the network is the limitation) We cannot send more than we receive (input and output must match).
7
Defining Network capacity
17) WA <= 10 18) WK <= 20 19) AW <= 10 20) AK <= 15 21) AI <= 25 22) KW <= 20 23) KA <= 15 24) KC <= 30 25) KH <= 15 26) IA <= 25 27) IC <= 20 28) IJ <= 15 29) CK <= 30 30) CI <= 20 31) CJ <= 25 32) CL <= 15 33) CP <= 30 34) HK <= 15 35) HP <= 20 36) JI <= 15 37) JC <= 25 38) JL <= 20 39) JP <= 15 40) JM <= 25 41) LC <= 15 42) LJ <= 20 43) LP <= 20 44) LM <= 15 45) LE <= 30 46) PC <= 30 47) PH <= 20 48) PJ <= 15 49) PL <= 20 50) PE <= 15 51) MJ <= 25 52) ML <= 15 53) ME <= 25 54) EL <= 30 55) EP <= 15 56) EM <= 25 Notice flow limitations both ways of the network pipes
8
Solution Analysis - Sequence of events
Solution Analysis - Costs and Profits
9
Lindo Background Material
10
Lindo Code 1) 231.5000 LP O OTIMUM FOUND AT STEP 11
1) VARIABLE VALUE REDUCED COST JK EK WA WK AW AK AI KW KA KC KH IA IC IJ CK CI CJ CL CP HK HP JI JC JL JP JM LC LJ LP LM LE PC PH PJ PL PE MJ ML ME EL EP EM LK MAX 4.35JK EK- 0.21WA WK AW AK AI KW KA KC KH IA IC IJ CK CI CJ CL - 0.3CP HK HP JI JC JL JP JM LC LJ LP LM LE - 0.3PC PH PJ PL PE MJ ML ME EL EP EM SUBJECT TO 1) JK + EK <= 70 2) JK <= 353) EK - KH - KC - KA - KW <= 0 4) JK - KH - KC - KA - KW <= 0 5) AW + KW - WA - WK = 0 6) WA + KA + IA - AW - AK - AI = 0 7) WK + AK + CK + HK + LK + JK - KW - KA - KC - KH >= -100 8) AI + CI + JI - IA - IC - IJ = 0 9) KC + IC + JC + LC + PC - CK - CI - CJ - CL - CP = 0 10) KH + PH - HK - HP = 0 11) JK + JI + JC + JP + JL + JM - IJ - CJ - PJ - LJ - MJ = 0 12) CL + JL + PL + ML + EL - LC - LJ - LP - LM - LE = 0 13) CP + HP + JP + LP + EP - PC - PH - PJ - PL - PE = 0 14) JM + LM + EM - MJ - ML - ME = 0 15) EK + EL +EP + EM - LE - PE - ME =0 17) WA <= 10 18) WK <= 20 19) AW <= 10 20) AK <= 15 21) AI <= 25 22) KW <= 20 23) KA <= 15 24) KC <= 30 25) KH <= 15 26) IA <= 25 27) IC <= 20 28) IJ <= 15 29) CK <= 30 30) CI <= 20 31) CJ <= 25 32) CL <= 15 33) CP <= 30 34) HK <= 15 35) HP <= 20 36) JI <= 15 37) JC <= 25 38) JL <= 20 39) JP <= 15 40) JM <= 25 41) LC <= 15 42) LJ <= 20 43) LP <= 20 44) LM <= 15 45) LE <= 30 46) PC <= 30 47) PH <= 20 48) PJ <= 15 49) PL <= 20 50) PE <= 15 51) MJ <= 25 52) ML <= 15 53) ME <= 25 54) EL <= 30 55) EP <= 15 56) EM <= 25 END
11
Lindo Output - Sensitivity
ROW SLACK OR SURPLUS DUAL PRICES 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 17) 18) 19) 20) 21) 22) 23) 24) 25) 26) 27) 28) ROW SLACK OR SURPLUS DUAL PRICES 29) 30) 31) 32) 33) 34) 35) 36) 37) 38) 39) 40) 41) 42) 43) 44) 45) 46) 47) 48) 49) 50) 51) 52) 53) 54) 55) 56) NO. ITERATIONS=
12
Excel Formulation
13
Maximal Flow Problem (.21, 10) (.35, 25) (.28, 15) (.52, 25) (.53, 25)
Wharton 1 Waha 2 Kiowa 6 Joliet 8 Maumee 10 Leidy 11 Carthage 4 Katy 3 Henry 5 Lebanon 9 Perryville 7 (.21, 10) (.35, 25) (.28, 15) (.52, 25) (.53, 25) (.33, 15) (.47, 30) (.22, 15) (.48, 20) (.45, 20) (.35, 15) (.47, 25) (.28, 20) (.51, 15) (.42, 30) (.39, 15) (.30, 30) (.32, 20) (.52, 15)
14
Excel formulation Max 4.35X X113 – 0.21X12 – 0.28X13 - …… X1110 S.T. X21 + X31 – X12 – X13 = 0 (Node 1 incoming and outgoing) …. X13 + X23 + X43 + X53 + X83 + X113 – X31 – X32 – X34 – X35 = 0 (Node 3 incoming and outgoing) X48 + X68 + X78 + X98 + X108 – X83 – X84 – X86 – X87 – X89 – X810 = 0 (Node 8 incoming and outgoing) X711 + X911 + X1011 – X113 – X117 – X119 – X1110 = 0 (Node 11 incoming and outgoing) 0 <= X12 <= 10 (Capacity constraint) 0 <= X13 <= 20 (Capacity constraint) ….. 0 <= X1011 <= 25 0 <= X83 <= 35 0 <= X113 <= 60
15
Solution 35 Maumee 10 (.52, 25) Joliet 8 (.53, 25) 15 (.45, 20) Kiowa 6 (.33, 15) Leidy 11 20 25 20 Lebanon 9 10 Waha 2 Carthage 4 15 (.52, 15) 5 15 15 10 5 30 Perryville 7 Wharton 1 Katy 3 Henry 5 35 10 15 15
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.