Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 4: curve sketching.

Similar presentations


Presentation on theme: "Unit 4: curve sketching."โ€” Presentation transcript:

1 Unit 4: curve sketching

2 WARM-UP 1. Solve ๐‘ฆ 3 +4 ๐‘ฆ 2 +๐‘ฆโˆ’6=0. (A) ๐‘ฆ=โˆ’1, โˆ’3, โˆ’2 (B) ๐‘ฆ=1, โˆ’3, โˆ’2 (C) ๐‘ฆ=โˆ’1, 3, โˆ’2 (D) ๐‘ฆ=1, โˆ’3, 2

3 WARM-UP 2. Solve 5 3โˆ’๐‘ฅ โ‰ค3๐‘ฅโˆ’1. (A) ๐‘ฅโ‰คโˆ’2 (B) ๐‘ฅโ‰ฅโˆ’2 (C) ๐‘ฅโ‰ฅ2 (D) ๐‘ฅโ‰ค2

4 WARM-UP 3. Solve ๐‘ฅ 2 +3๐‘ฅโˆ’4>0. (A) ๐‘ฅ>1 (B) ๐‘ฅ<โˆ’4 and ๐‘ฅ>1 (C) ๐‘ฅ<โˆ’4 (D) โˆ’4<๐‘ฅ<1

5 WARM-UP 4. Evaluate lim ๐‘ฅโ†’3 ๐‘ฅ 3 โˆ’27 ๐‘ฅโˆ’3 (A) 27 (B) 0 (C) 3 (D) 9

6 WARM-UP 5. Divide ( ๐‘ฅ 2 โˆ’5๐‘ฅ+4)รท(๐‘ฅ+3), and then write the answer in the form ๐‘Ž๐‘ฅ+๐‘+ ๐‘Ÿ ๐‘ž(๐‘ฅ) . (A) ๐‘ฅโˆ’2โˆ’ 2 ๐‘ฅ+3 (C) ๐‘ฅโˆ’2+ 10 ๐‘ฅ+3 (B) ๐‘ฅโˆ’8โˆ’ 20 ๐‘ฅ+3 (D) ๐‘ฅโˆ’8+ 28 ๐‘ฅ+3

7 WARM-UP 6. State the vertical asymptote(s) of ๐‘ฆ= 5๐‘ฅ 2 โˆ’20 3 ๐‘ฅ 2 โˆ’16๐‘ฅ+5 (A) ๐‘ฅ=4 (B) ๐‘ฆ=4 (C) ๐‘ฅ= and ๐‘ฅ=5 (D) ๐‘ฅ=โˆ’2 and ๐‘ฅ=2

8 WARM-UP 7. State the horizontal asymptote(s) of ๐‘ฆ= 5๐‘ฅ 2 โˆ’20 3 ๐‘ฅ 2 โˆ’16๐‘ฅ+5 (A) ๐‘ฅ=0 (B) ๐‘ฆ=0 (C) ๐‘ฆ= 5 3 (D) ๐‘ฅ=โˆ’2 and ๐‘ฅ=2

9 WARM-UP 8. State the ๐‘ฅ-intercept(s) of ๐‘ฆ= 5๐‘ฅ 2 โˆ’20 3 ๐‘ฅ 2 โˆ’16๐‘ฅ+5 (A) ๐‘ฅ= and ๐‘ฅ=5 (B) There are no ๐‘ฅ-intercepts (C) ๐‘ฅ=โˆ’4 (D) ๐‘ฅ=โˆ’2 and ๐‘ฅ=2

10 WARM-UP 9. State the ๐‘ฆ-intercept(s) of ๐‘ฆ= 5๐‘ฅ 2 โˆ’20 3 ๐‘ฅ 2 โˆ’16๐‘ฅ+5 (A) ๐‘ฆ=โˆ’4 (B) ๐‘ฆ=4 (C) ๐‘ฆ= 4 5 (D) ๐‘ฆ= โˆ’4 5

11 WARM-UP 10. State the domain of ๐‘ฆ= 5๐‘ฅ 2 โˆ’20 3 ๐‘ฅ 2 โˆ’16๐‘ฅ+5 (A) ๐ท={๐‘ฅโˆˆโ„} (B) ๐ท= ๐‘ฅโˆˆโ„ ๐‘ฅโ‰ โˆ’2, 2 (C) ๐ท= ๐‘ฅโˆˆโ„ ๐‘ฅโ‰  1 3 , 5 (D) ๐ท= ๐‘ฅโˆˆโ„ ๐‘ฅโ‰ โˆ’4

12 WARM-UP 11. State the range of ๐‘ฆ= 5๐‘ฅ 2 โˆ’20 3 ๐‘ฅ 2 โˆ’16๐‘ฅ+5 (A) ๐‘…={๐‘ฆโˆˆโ„} (B) ๐‘…= ๐‘ฆโˆˆโ„ ๐‘ฅโ‰  5 3 (C) ๐‘…= ๐‘ฆโˆˆโ„ ๐‘ฅโ‰  1 3 , 5 (D) ๐‘…= ๐‘ฆโˆˆโ„ ๐‘ฅโ‰ โˆ’4

13 4.1 Increasing and Decreasing Functions
A function ๐‘“ is increasing on an interval if, for any value of ๐‘ฅ 1 < ๐‘ฅ 2 in the interval, ๐‘“ ๐‘ฅ 1 <๐‘“ ๐‘ฅ 2 . A function ๐‘“ is decreasing on an interval if, for any value of ๐‘ฅ 1 < ๐‘ฅ 2 in the interval, ๐‘“ ๐‘ฅ 1 >๐‘“ ๐‘ฅ 2 .

14 4.1 Increasing and Decreasing Functions
For a function ๐‘“ that is continuous and differentiable on an interval ๐ผ. ๐‘“ ๐‘ฅ is increasing on ๐ผ if ๐‘“ โ€ฒ ๐‘ฅ >0 for all values of ๐‘ฅ in ๐ผ ๐‘“ ๐‘ฅ is decreasing on ๐ผ if ๐‘“ โ€ฒ ๐‘ฅ <0 for all values of ๐‘ฅ in ๐ผ.

15 Using the derivative to reason about intervals of increase/decrease.
Example #1: Using the derivative to reason about intervals of increase/decrease. (a) ๐‘ฆ= ๐‘ฅ 3 +3 ๐‘ฅ 2 โˆ’2 ๐‘ฆโ€ฒ= 3๐‘ฅ 2 +6๐‘ฅ Value of ๐’™ ๐’™<โˆ’๐Ÿ โˆ’๐Ÿ<๐’™<๐ŸŽ ๐’™>๐ŸŽ Sign of ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ >0 ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ <0 Slope of tangents positive negative Increasing/decreasing increasing decreasing 0= 3๐‘ฅ 2 +6๐‘ฅ 0=3๐‘ฅ(๐‘ฅ+2) ๐‘ฅ=โˆ’2, 0

16 Using the derivative to reason about intervals of increase/decrease.
Example #1: Using the derivative to reason about intervals of increase/decrease. (b) ๐‘ฆ= ๐‘ฅ ๐‘ฅ 2 +1 Value of ๐’™ ๐’™<โˆ’๐Ÿ โˆ’๐Ÿ<๐’™<๐Ÿ ๐’™>๐Ÿ Sign of ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ <0 ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ >0 Slope of tangents negative positive Increasing/decreasing decreasing increasing ๐‘ฆ โ€ฒ = ๐‘ฅ 2 +1โˆ’๐‘ฅ(2๐‘ฅ) ( ๐‘ฅ 2 +1) 2 ๐‘ฆ โ€ฒ = โˆ’๐‘ฅ ( ๐‘ฅ 2 +1) 2 0= โˆ’๐‘ฅ ( ๐‘ฅ 2 +1) 2 0= โˆ’๐‘ฅ 2 +1 ๐‘ฅ 2 =1 โ‡’ ๐‘ฅ=โˆ’1 or ๐‘ฅ=1

17 Example #2: Graphing a function given the derivative. Consider the graph of ๐‘“ โ€ฒ ๐‘ฅ . Graph ๐‘“ ๐‘ฅ .

18 In summary โ€ฆ QUESTIONS: p #4cde, 5-9


Download ppt "Unit 4: curve sketching."

Similar presentations


Ads by Google