Download presentation
Presentation is loading. Please wait.
1
Unit 4: curve sketching
2
WARM-UP 1. Solve ๐ฆ 3 +4 ๐ฆ 2 +๐ฆโ6=0. (A) ๐ฆ=โ1, โ3, โ2 (B) ๐ฆ=1, โ3, โ2 (C) ๐ฆ=โ1, 3, โ2 (D) ๐ฆ=1, โ3, 2
3
WARM-UP 2. Solve 5 3โ๐ฅ โค3๐ฅโ1. (A) ๐ฅโคโ2 (B) ๐ฅโฅโ2 (C) ๐ฅโฅ2 (D) ๐ฅโค2
4
WARM-UP 3. Solve ๐ฅ 2 +3๐ฅโ4>0. (A) ๐ฅ>1 (B) ๐ฅ<โ4 and ๐ฅ>1 (C) ๐ฅ<โ4 (D) โ4<๐ฅ<1
5
WARM-UP 4. Evaluate lim ๐ฅโ3 ๐ฅ 3 โ27 ๐ฅโ3 (A) 27 (B) 0 (C) 3 (D) 9
6
WARM-UP 5. Divide ( ๐ฅ 2 โ5๐ฅ+4)รท(๐ฅ+3), and then write the answer in the form ๐๐ฅ+๐+ ๐ ๐(๐ฅ) . (A) ๐ฅโ2โ 2 ๐ฅ+3 (C) ๐ฅโ2+ 10 ๐ฅ+3 (B) ๐ฅโ8โ 20 ๐ฅ+3 (D) ๐ฅโ8+ 28 ๐ฅ+3
7
WARM-UP 6. State the vertical asymptote(s) of ๐ฆ= 5๐ฅ 2 โ20 3 ๐ฅ 2 โ16๐ฅ+5 (A) ๐ฅ=4 (B) ๐ฆ=4 (C) ๐ฅ= and ๐ฅ=5 (D) ๐ฅ=โ2 and ๐ฅ=2
8
WARM-UP 7. State the horizontal asymptote(s) of ๐ฆ= 5๐ฅ 2 โ20 3 ๐ฅ 2 โ16๐ฅ+5 (A) ๐ฅ=0 (B) ๐ฆ=0 (C) ๐ฆ= 5 3 (D) ๐ฅ=โ2 and ๐ฅ=2
9
WARM-UP 8. State the ๐ฅ-intercept(s) of ๐ฆ= 5๐ฅ 2 โ20 3 ๐ฅ 2 โ16๐ฅ+5 (A) ๐ฅ= and ๐ฅ=5 (B) There are no ๐ฅ-intercepts (C) ๐ฅ=โ4 (D) ๐ฅ=โ2 and ๐ฅ=2
10
WARM-UP 9. State the ๐ฆ-intercept(s) of ๐ฆ= 5๐ฅ 2 โ20 3 ๐ฅ 2 โ16๐ฅ+5 (A) ๐ฆ=โ4 (B) ๐ฆ=4 (C) ๐ฆ= 4 5 (D) ๐ฆ= โ4 5
11
WARM-UP 10. State the domain of ๐ฆ= 5๐ฅ 2 โ20 3 ๐ฅ 2 โ16๐ฅ+5 (A) ๐ท={๐ฅโโ} (B) ๐ท= ๐ฅโโ ๐ฅโ โ2, 2 (C) ๐ท= ๐ฅโโ ๐ฅโ 1 3 , 5 (D) ๐ท= ๐ฅโโ ๐ฅโ โ4
12
WARM-UP 11. State the range of ๐ฆ= 5๐ฅ 2 โ20 3 ๐ฅ 2 โ16๐ฅ+5 (A) ๐
={๐ฆโโ} (B) ๐
= ๐ฆโโ ๐ฅโ 5 3 (C) ๐
= ๐ฆโโ ๐ฅโ 1 3 , 5 (D) ๐
= ๐ฆโโ ๐ฅโ โ4
13
4.1 Increasing and Decreasing Functions
A function ๐ is increasing on an interval if, for any value of ๐ฅ 1 < ๐ฅ 2 in the interval, ๐ ๐ฅ 1 <๐ ๐ฅ 2 . A function ๐ is decreasing on an interval if, for any value of ๐ฅ 1 < ๐ฅ 2 in the interval, ๐ ๐ฅ 1 >๐ ๐ฅ 2 .
14
4.1 Increasing and Decreasing Functions
For a function ๐ that is continuous and differentiable on an interval ๐ผ. ๐ ๐ฅ is increasing on ๐ผ if ๐ โฒ ๐ฅ >0 for all values of ๐ฅ in ๐ผ ๐ ๐ฅ is decreasing on ๐ผ if ๐ โฒ ๐ฅ <0 for all values of ๐ฅ in ๐ผ.
15
Using the derivative to reason about intervals of increase/decrease.
Example #1: Using the derivative to reason about intervals of increase/decrease. (a) ๐ฆ= ๐ฅ 3 +3 ๐ฅ 2 โ2 ๐ฆโฒ= 3๐ฅ 2 +6๐ฅ Value of ๐ ๐<โ๐ โ๐<๐<๐ ๐>๐ Sign of ๐๐ฆ ๐๐ฅ ๐๐ฆ ๐๐ฅ >0 ๐๐ฆ ๐๐ฅ <0 Slope of tangents positive negative Increasing/decreasing increasing decreasing 0= 3๐ฅ 2 +6๐ฅ 0=3๐ฅ(๐ฅ+2) ๐ฅ=โ2, 0
16
Using the derivative to reason about intervals of increase/decrease.
Example #1: Using the derivative to reason about intervals of increase/decrease. (b) ๐ฆ= ๐ฅ ๐ฅ 2 +1 Value of ๐ ๐<โ๐ โ๐<๐<๐ ๐>๐ Sign of ๐๐ฆ ๐๐ฅ ๐๐ฆ ๐๐ฅ <0 ๐๐ฆ ๐๐ฅ >0 Slope of tangents negative positive Increasing/decreasing decreasing increasing ๐ฆ โฒ = ๐ฅ 2 +1โ๐ฅ(2๐ฅ) ( ๐ฅ 2 +1) 2 ๐ฆ โฒ = โ๐ฅ ( ๐ฅ 2 +1) 2 0= โ๐ฅ ( ๐ฅ 2 +1) 2 0= โ๐ฅ 2 +1 ๐ฅ 2 =1 โ ๐ฅ=โ1 or ๐ฅ=1
17
Example #2: Graphing a function given the derivative. Consider the graph of ๐ โฒ ๐ฅ . Graph ๐ ๐ฅ .
18
In summary โฆ QUESTIONS: p #4cde, 5-9
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.