Presentation is loading. Please wait.

Presentation is loading. Please wait.

Integration 2a.

Similar presentations


Presentation on theme: "Integration 2a."β€” Presentation transcript:

1 Integration 2a

2 BAT Find integrals using rule for log functions
Integration I KUS objectives BAT Find integrals using rule for log functions BAT Solve problems where partial factions used with this rule; Starter: Differentiate π‘₯βˆ’3 7 Integrate π‘₯βˆ’3 7 Integrate 𝑒 4π‘₯+7

3 Therefore you can use either x or –x in the Integral
Notes As we are integrating to find the Area, you can see for any 2 points, the area will be the same for either graph… Therefore you can use either x or –x in the Integral However, you cannot find ln of a negative, just use the positive value instead! This is saying when we Integrate either of the following, we get the same result:

4 WB 5 Find the following integral 1 3π‘₯ + 2 𝑑π‘₯
1) Integrate the function using what you know from differentiation 2) Divide by the coefficient of x 3) Simplify if possible and add C We can extend the rule 𝑓′(π‘Žπ‘₯+𝑏) 𝑑π‘₯= 1 π‘Ž π‘Žπ‘₯+𝑏 +𝐢 To 𝑓 β€² π‘₯ 𝑓 π‘₯ 𝑑π‘₯= ln 𝑓(π‘₯) +𝐢

5 WB 6 Find the following integrals: a) 1 4π‘₯βˆ’5 𝑑π‘₯ b) 3 3π‘₯+11 𝑑π‘₯ c) βˆ’2 7βˆ’6π‘₯ 𝑑π‘₯
1 4π‘₯βˆ’5 𝑑π‘₯ = ln 4π‘₯βˆ’5 +𝐢 3 3π‘₯+11 𝑑π‘₯ = ln 3π‘₯ C = ln 3π‘₯+11 +𝐢 βˆ’2 7βˆ’6π‘₯ 𝑑π‘₯ = 1 βˆ’6 βˆ’2 ln 7βˆ’6π‘₯ +C = ln 7βˆ’6π‘₯ +𝐢

6 WB 7 𝑓 β€² π‘₯ = 5 5π‘₯βˆ’1 , Given that the curve 𝑓(π‘₯) passes through point (8, ln 16 ) find 𝑓(π‘₯)
Using point (8, ln 3 ) ln 16 = ln 8 +𝐢 𝐢 = ln 16 βˆ’ ln 8 = ln 2 So (8, ln 3 ) 𝑓 π‘₯ = ln 5π‘₯βˆ’1 + ln 2

7 WB 8 Show that 2 7 2 4π‘₯βˆ’3 𝑑π‘₯ = ln 5 2 7 2 4π‘₯βˆ’3 𝑑π‘₯ = 1 4 2 ln 4π‘₯βˆ’3 7 2

8 Skills 212 homework 212

9 WB 9 Find the following integral π‘₯βˆ’5 π‘₯+1 π‘₯βˆ’2 𝑑π‘₯
Let x = 2 Let x = -1

10 WB 10a Find the following integral π‘₯ 2 βˆ’3π‘₯+2 9 π‘₯ 2 βˆ’4 𝑑π‘₯ by rearranging to the form 𝑁+ 𝐴 3π‘₯+2 + 𝐡 3π‘₯βˆ’2

11 Find the following integral:
WB 10b Find the following integral: =π‘₯ ln 3π‘₯βˆ’2 3π‘₯ 𝐢

12 WB 11a Find the following integral 3 π‘₯ 2 +4π‘₯βˆ’11 (π‘₯βˆ’2) (π‘₯+1) 2 𝑑π‘₯ by rearranging to partial fractions
3 π‘₯ 2 +4π‘₯βˆ’11 (π‘₯βˆ’2) (π‘₯+1) 2 = 𝐴 π‘₯βˆ’2 + 𝐡 π‘₯+1 + 𝐢 (π‘₯+1) 2 =𝐴( π‘₯ 𝐡 π‘₯βˆ’2 π‘₯+1 +𝐢(π‘₯βˆ’2) π‘₯=2 gives 9A= solves to 𝐴=1 π‘₯=βˆ’1 gives -3C= solves to C=4 π‘₯=0 gives A-2B-2C=-11 solves to B=2 3 π‘₯ 2 +4π‘₯βˆ’11 (π‘₯βˆ’2) (π‘₯+1) 2 = 1 π‘₯βˆ’2 + 2 π‘₯ (π‘₯+1) 2

13 = 1 π‘₯βˆ’2 + 2 π‘₯+1 + 4 (π‘₯+1) 2 𝑑π‘₯ = ln π‘₯βˆ’2 +2 ln π‘₯+1 βˆ’4 π‘₯+1 βˆ’1 +C
WB 11b Find the following integral π‘₯ 2 +4π‘₯βˆ’11 (π‘₯βˆ’2) (π‘₯+1) 2 𝑑π‘₯ by rearranging to partial fractions = π‘₯βˆ’2 + 2 π‘₯ (π‘₯+1) 2 𝑑π‘₯ A knotty integral! β€˜KNOT’ a logarithm term = ln π‘₯βˆ’2 +2 ln π‘₯+1 βˆ’4 π‘₯+1 βˆ’1 +C

14 WB 12 Show that 5 6 3π‘₯+2 (π‘₯+3)(π‘₯βˆ’4) 𝑑π‘₯= ln 9 2
3π‘₯+2 (π‘₯+3)(π‘₯βˆ’4) = …= 1 π‘₯ π‘₯βˆ’4 5 6 3π‘₯+2 (π‘₯+3)(π‘₯βˆ’4) 𝑑π‘₯ = π‘₯ π‘₯βˆ’4 dx = ln π‘₯ ln π‘₯βˆ’ = ln 9 +2 ln 2 βˆ’ ln ln 1 = ln 9 + ln 4 βˆ’ ln 8 = ln 9Γ— = ln 9 2

15 WB 13 Show that 𝑒 2 𝑒 4 5π‘₯βˆ’4 π‘₯ 2 βˆ’π‘₯ 𝑑π‘₯=8+ln 𝑒 4 βˆ’1 𝑒 2 βˆ’1
5π‘₯βˆ’4 π‘₯ 2 βˆ’π‘₯ = …= 4 π‘₯ + 1 π‘₯βˆ’1 𝑒 2 𝑒 π‘₯βˆ’4 π‘₯ 2 βˆ’π‘₯ 𝑑π‘₯ = 𝑒 2 𝑒 π‘₯ + 1 π‘₯βˆ’1 𝑑π‘₯ = 4 ln π‘₯ + ln π‘₯βˆ’ 𝑒 4 𝑒 2 = 4 ln 𝑒 4 + ln 𝑒 4 βˆ’1 βˆ’ 4 ln 𝑒 ln (𝑒 2 βˆ’1) = 16 + ln 𝑒 4 βˆ’1 βˆ’8 βˆ’ ln (𝑒 2 βˆ’1) = 8+ln 𝑒 4 βˆ’1 𝑒 2 βˆ’1

16 = 1 π‘₯βˆ’2 + 2 π‘₯+1 + 4 (π‘₯+1) 2 𝑑π‘₯ = ln π‘₯βˆ’2 +2 ln π‘₯+1 βˆ’4 π‘₯+1 βˆ’1 6 3
WB Show that π‘₯+2 (π‘₯+3)(π‘₯βˆ’4) 𝑑π‘₯= ln βˆ’ by rearranging to partial fractions From WB11 earlier = π‘₯βˆ’2 + 2 π‘₯ (π‘₯+1) 2 𝑑π‘₯ = ln π‘₯βˆ’2 +2 ln π‘₯+1 βˆ’4 π‘₯+1 βˆ’ = ln 4 +2 ln 7 βˆ’ 4 7 βˆ’ ln 1 +2 ln 4 βˆ’ 4 4 = ln 4 +2 ln 7 βˆ’ 4 7 βˆ’0βˆ’2 ln 4 βˆ’1 = 2 ln 7 βˆ’ ln 4 βˆ’ = ln βˆ’ QED

17 Skills 213 homework 213

18 KUS objectives BAT Find integrals using rule for log functions
BAT Solve problems where partial factions used with this rule; self-assess One thing learned is – One thing to improve is –

19 WB 15 Integrate the following:
WB Integrate the following: Start by trying y = ln|denominator| Differentiate This is double what we want so multiply the β€˜guess’ by 1/2

20 END


Download ppt "Integration 2a."

Similar presentations


Ads by Google