Presentation is loading. Please wait.

Presentation is loading. Please wait.

Reversing Label Switching:

Similar presentations


Presentation on theme: "Reversing Label Switching:"โ€” Presentation transcript:

1 Reversing Label Switching:
An Interactive Talk Earl Duncan 20 July 2017

2 Introduction Given observed data ๐’š= ๐‘ฆ 1 ,โ€ฆ, ๐‘ฆ ๐‘ , the ๐พ-component mixture model is expressed as ๐’€ ~ ๐‘ ๐’š ๐’˜,๐“ = ๐‘–=1 ๐‘ ๐‘˜=1 ๐พ ๐‘ค ๐‘˜ ๐‘“ ๐‘˜ ๐‘ฆ ๐‘– ๐“ ๐‘˜ where ๐“ ๐‘˜ denotes unknown component-specific parameter(s), and ๐‘“ ๐‘˜ (โˆ™) is the ๐‘˜ th component density with corresponding mixture weight ๐‘ค ๐‘˜ subject to: ๐‘˜=1 ๐พ ๐‘ค ๐‘˜ =1 and ๐‘ค ๐‘˜ โ‰ฅ0 for ๐‘˜=1,โ€ฆ,๐พ. Marin, J-M., K. Mengersen, and C. P. Robert โ€œBayesian modelling and inference on mixtures of distributionsโ€ In Handbook of Statistics edited C. Rao and D. Dey. New York: Springer-Verlag. Earl Duncan BRAG 20 July 2017: Reversing Label Switching 1/12

3 Introduction A latent allocation variable ๐‘ ๐‘– is used to identify which component ๐‘Œ ๐‘– belongs to. ๐‘Œ ๐‘– ๐‘ง ๐‘– ,๐“ ~ ๐‘“ ๐‘ง ๐‘– ๐‘ฆ ๐‘– ๐“ ๐‘ง ๐‘– ๐‘ ๐‘– |๐’˜ ~ Cat ๐‘ค 1 , โ€ฆ, ๐‘ค ๐พ The likelihood is exchangeable meaning that it is invariant to permutations of the labels identifying the mixture components ๐‘ ๐’š ๐œฝ =๐‘ ๐’š ๐œ ๐œฝ E.g ๐‘ ๐’š ๐œƒ 1 , ๐œƒ 2 =๐‘ ๐’š ๐œƒ 2 , ๐œƒ for some permutation ๐œ. If the posterior distribution is invariant to permutations of the labels, this is known as label switching (LS). Earl Duncan BRAG 20 July 2017: Reversing Label Switching 2/12

4 Introduction Consider the conditions:
the prior is (at least partly) exchangeable the sampler is efficient at exploring the posterior hypersurface If condition 1 holds, the posterior will have (up to) ๐พ! symmetric modes. If condition 1 and 2 hold, LS will occur (i.e. the symmetric modes will be observed). No label switching LS between all 3 groups LS between groups 1 and 2 Earl Duncan BRAG 20 July 2017: Reversing Label Switching 3/12

5 Introduction If label switching occurs, the marginal posterior distributions are identical for each component. Therefore, it is impossible to make inferences! K = 3 K = 4 Earl Duncan BRAG 20 July 2017: Reversing Label Switching 4/12

6 Introduction To make sensible inferences, one must first reverse the label switching using a relabelling algorithm. If/when LS occurs, determine the permutations ๐œ (1) ,โ€ฆ, ๐œ (๐‘€) to undo the label switching. Apply the permutations to ๐“, ๐’˜, and inverse permutations to ๐’›. The function ๐œ(โˆ™) can be regarded as a generic permutation function which either permutes or relabels. Let ๐œ=( ๐œ 1 , โ€ฆ, ๐œ ๐พ ) be a permutation of the index set 1,โ€ฆ,๐พ , let ๐’—=( ๐‘ฃ 1 ,โ€ฆ, ๐‘ฃ ๐พ ) be an arbitrary ๐พ-length vector, and let ๐’›=( ๐“ 1 , ๐“ 2 , ๐“ 3 ,โ€ฆ) be an arbitrary length vector (or possibly scalar) containing only the values 1,โ€ฆ,๐พ . Then: Permute: ๐œ ๐‘ฃ 1 ,โ€ฆ, ๐‘ฃ ๐พ = ๐‘ฃ ๐œ 1 ,โ€ฆ, ๐‘ฃ ๐œ ๐พ Relabel: ๐œ ๐“ 1 , ๐“ 2 , ๐“ 3 ,โ€ฆ = ๐œ ๐“ 1 , ๐œ ๐“ 2 , ๐œ ๐“ 3 ,โ€ฆ Earl Duncan BRAG 20 July 2017: Reversing Label Switching 5/12

7 Example Example: determining ๐œ
๐œ (๐‘š) can be determined from the posterior estimates ๐’› (๐‘š) and a reference allocation vector ๐’› โˆ— = ๐‘ง 1 ,โ€ฆ, ๐‘ง ๐‘ ( ๐‘š โˆ— ) . Earl Duncan BRAG 20 July 2017: Reversing Label Switching 6/12

8 Exercises Consider the following cross-tabulation of reference allocation vector ๐’› โˆ— = ๐’› ( ๐‘š โˆ— ) and ๐’› (7) (here ๐‘=200). ๐’› โˆ— ๐’› (7) Question 1: What should the permutation ๐œ (7) be to reverse the labels of a component-specific parameter, ๐œฝ (7) ? Hint: (3, 1, 4, 2) or (2, 4, 1, 3) Answer: ๐œ (7) =(3, 1, 4, 2) Earl Duncan BRAG 20 July 2017: Reversing Label Switching 7/12

9 Exercises The second step requires this permutation to be applied to the component-specific parameters and the labels. Question 2: If ๐’˜ (7) =(0.5, 0.1, 0.3, 0.2) and ๐’› (7) =(3, 4, 2, 2, 3, โ€ฆ), what are the resulting estimates after relabelling? Recall ๐œ (7) =(3, 1, 4, 2). Hint: Permuting: ๐œ ๐‘ฃ 1 ,โ€ฆ, ๐‘ฃ ๐พ = ๐‘ฃ ๐œ 1 ,โ€ฆ, ๐‘ฃ ๐œ ๐พ Relabelling: ๐œ ๐“ 1 , ๐“ 2 , ๐“ 3 ,โ€ฆ = ๐œ ๐“ 1 , ๐œ ๐“ 2 , ๐œ ๐“ 3 ,โ€ฆ Answer: ๐’˜ (7) := ๐œ , 0.1, 0.3, 0.2 = 0.3, 0.5, 0.2, 0.1 ๐’› (7) := ๐œ โˆ’๐Ÿ (3, 4, 2, 2, 3, โ€ฆ) = ( ๐œ ๐“ 1 โˆ’1 , ๐œ ๐“ 2 โˆ’1 , ๐œ ๐“ 3 โˆ’1 , ๐œ ๐“ 4 โˆ’1 , ๐œ ๐“ 5 โˆ’1 ,โ€ฆ) = ( ๐œ 3 โˆ’1 , ๐œ 4 โˆ’1 , ๐œ 2 โˆ’1 , ๐œ 2 โˆ’1 , ๐œ 3 โˆ’1 ,โ€ฆ) = (1, 3, 4, 4, 1,โ€ฆ) Earl Duncan BRAG 20 July 2017: Reversing Label Switching 8/12

10 Exercises Question 3: Why is the inverse permutation used to relabel ๐’›? Hint: Consider drawing values from 3 component densities. Introduce LS, and note how the new values of ๐œฝ and ๐’› are recorded. ๐œฝ ? ? ? ? ? ? โ‹ฎ โ‹ฎ โ‹ฎ w/o LS w/ LS Answer: Draw values without LS, then with LS: ๐œฝ โ‹ฎ โ‹ฎ โ‹ฎ โ‡’ ๐œ LS =(2, 3, 1) โ‡’๐œ= ๐œ LS โˆ’1 =(3, 1, 2) But how are the values of ๐’› recorded? Earl Duncan BRAG 20 July 2017: Reversing Label Switching 9/12

11 Exercises Answer continued: ๐œ LS =(2, 3, 1) ๐œ=(3, 1, 2)
๐œฝ โ‹ฎ โ‹ฎ โ‹ฎ โ†’ Draw from Middle, but label it โ€œ1โ€ Draw from Right, but label it โ€œ2โ€ Draw from Left, but label it โ€œ3โ€ 2โ†’ 1 3โ†’ 2 1โ†’ 3 ๐’› โ‹ฏ โ‹ฏ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‡“ โ‡” ๐œ โˆ’1 ( ๐’› 2 )=( ๐œ ๐“ 1 โˆ’1 , ๐œ ๐“ 2 โˆ’1 , ๐œ ๐“ 3 โˆ’1 , ๐œ ๐“ 4 โˆ’1 , ๐œ ๐“ 5 โˆ’1 ,โ€ฆ) =( ๐œ 2 โˆ’1 , ๐œ 2 โˆ’1 , ๐œ 3 โˆ’1 , ๐œ 1 โˆ’1 , ๐œ 3 โˆ’1 ,โ€ฆ) =(3, 3, 1, 2, 1,โ€ฆ) ๐’› โ‹ฏ ? ? ? ? ? โ‹ฏ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ Earl Duncan BRAG 20 July 2017: Reversing Label Switching 10/12

12 Comparison of Relabelling Algorithms
Earl Duncan BRAG 20 July 2017: Reversing Label Switching 11/12

13 Questions? Any questions?
Earl Duncan BRAG 20 July 2017: Reversing Label Switching 12/12


Download ppt "Reversing Label Switching:"

Similar presentations


Ads by Google