Download presentation
Presentation is loading. Please wait.
1
Yield Optimization: Divide and Conquer Method
Christopher Wottawa June 10, 2010 EE201C
2
Outline Yield Estimation: Probability Weighting
Yield Optimization: Divide and Conquer Results Discussion Ideas for Improvement
3
Yield Estimation: Baseline algorithm
1) Generate N random parameter sets 2) Simulate 3) Count the number of successes if circuit passes if circuit fails
4
Another way to look at Yield Rate:
“Randomly” select one parameter set. (using Gaussian distribution for each parameter) The probability that this parameter set gives a successful circuit should equal the yield rate.
5
Yield Estimation: Probability Weighting
Goal Have more samples in failure region (Importance Sampling) Algorithm: Use uniform distribution to select parameter sets Assign a weight to each parameter set Calculate yield: Suppose one parameter… wi equals the probability of this parameter set coming up “normally.”
6
Yield Estimation: Results
Normal Probability Weighting Test Procedure: Do 5 Monte Carlo simulations using each method Used initial design values for parameter set Used 3000 MC samples per run Read Yield Write Yield Total Yield 53.33 86.00 47.20 53.10 84.50 44.67 52.73 85.06 44.37 55.53 85.10 47.60 52.93 85.56 45.20 48.85 86.24 42.26 52.65 81.72 43.13 53.20 85.41 44.49 44.20 86.77 36.55 50.14 85.87 42.09
7
Yield Optimization: Baseline
Try every single possible combination of parameter values 6 values for Vth2, Vth5 7 values for Leff2, Leff5 1764 possible parameter sets ~60 hours to simulate
8
Yield Optimization: Divide and Conquer
Assumptions: Yield rates change gradually, continuously over the parameter space “Better” parameter sets lie near “Good” parameter sets Algorithm: Parameter space Parameter space 74% 90% 50% 82% 88% 70% 89% 65% Parameter set 80% 15% 50% 70% Parameter space
9
Implementation Details
Used recursion, storing results in a global array Set configuration parameters: Number of depth levels Number of “best regions” to choose per level Number of MC samples in yield estimation Number of parameter sets per parameter space Some time saving measures: Check Area and Power before doing Yield Simulation A “fuzzy” constraint tightens at each depth level If either constraint fails, skip simulations and set yield to zero. If read yield is too low, skip write yield. Use Perl for text parsing.
10
Results Simulations Characteristics: Configuration: “Optimal” Results:
336 parameter sets (w/ 500 MC runs per) 84 best results 10.25 hours Configuration: # values per parameter = 2 ( 16 sets per parameter space) # levels = 3; # parameters = 4; # best regions = 4 # MC samples = 500 Read yield skip % = 70 “Optimal” Results: 1) Assuming that the failure region lies nearer the edges Leff2 Leff5 Vth2 Vth5 Area Power R Yield W Yield T Yield 0.0980 0.0975 0.3238 0.2762 1.1274 97.74% 90.86% 88.75% 0.0950 0.35 0.21 - 99.6% 99.9% 0.1 0.2607 1.1291 48.084 54.6% 85.2% 46.4% Divide & Conquer TA’s baseline Initial design
11
Yield Optimization: Discussion
Positive outcomes Significant run time gains, fewer MC simulations Higher resolution than standard baseline algorithm (can hit those “in-between” spots) Issues Algorithm has difficulty reaching the edges of the parameter space TA Optimal Leff is at the edge (0.095) Optimal solution may lie in “unchosen” regions 1) Assuming that the failure region lies nearer the edges
12
Ideas for Improvement Yield Estimation: Yield Optimization:
Use a shifted Gaussian rather than uniform distribution, but this requires a different weight calculation. Yield Optimization: Change way parameter space is divided, so that edge is more reachable. Choose different number of best regions at each depth level (50% at first level, 25% at second level, etc) Choose best regions based on merit, rather than number (i.e. all regions that pass 50% yield in level 1, 70% in level 2) Try changing the “fuzzy” constraint parameters (i.e. allow all area/power violations for just first level) Processing: Use a faster language (C++? Perl? Java? Linux shell?)
13
Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.