Download presentation
Presentation is loading. Please wait.
Published byMavis Marshall Modified over 6 years ago
1
Homework Log Fri 4/22 Lesson 8 – 4 Learning Objective:
To use double & half angle identities to verify or find exact trig values Hw: #810 Pg. 509 #4, 8, 10, 12, 16, 24, 28, 32, 33 – 39 odd, 42, 48, 54
2
4/22/16 Lesson 8 – 4 Day 3 Double & Half Angle Identities
Advanced Math/Trig
3
Learning Objective To use double or half angle identities to do the following: Find exact Trig values Rewrite Trig identities
4
1. Find the exact values of all the trig functions of 2𝜃
tan 𝜃 =−2 2 & sec 𝜃 >0 Not Special Angle but can use pythag identity 1+ 𝑡𝑎𝑛 2 𝜃= 𝑠𝑒𝑐 2 𝜃 So cos 𝜃 = 1 3 1+ 𝑡𝑎𝑛 2 𝜃 = sec 𝜃 Since tan 𝜃 = sin 𝜃 cos 𝜃 1+ (−2 2 ) 2 = sec 𝜃 tan 𝜃 cos 𝜃 = sin 𝜃 − = sin 𝜃 1+4(2) = sec 𝜃 − = sin 𝜃 9 = sec 𝜃 3 = sec 𝜃
5
#1 Cont’d Find the exact values of all the trig functions of 2𝜃
sin 𝜃 =− cos 𝜃 = 1 3 tan 𝜃 =−2 2 =2 − = − sin 2𝜃 =2 sin 𝜃 cos 𝜃 = − − cos 2𝜃 = 𝑐𝑜𝑠 2 𝜃− 𝑠𝑖𝑛 2 𝜃 = 1 9 − 8 9 =− 7 9 sec 2𝜃 = 1 cos 2𝜃 =− 9 7 =− csc 2𝜃 = 1 sin 2𝜃 = 9 −4 2
6
#1 Cont’d Find the exact values of all the trig functions of 2𝜃
sin 𝜃 =− cos 𝜃 = 1 3 tan 𝜃 =−2 2 = − − 7 9 = −4 2 −7 = tan 2𝜃 = sin 2𝜃 cos 2𝜃 = cot 2𝜃 = 1 tan 2𝜃 =
7
2. Find the exact values of sin, cos, and tan of 3𝜋 8
3𝜋 8 in QI So cos 𝜃 >0 & sin 𝜃 >0 Use Half Angle Formulas! 3𝜋 8 = 𝜃 2 ? 3𝜋 8 =2𝜃 ? 3𝜋 16 =𝜃 6𝜋 8 =𝜃 cos 3𝜋 4 =− NOT USEFUL 3𝜋 4 =𝜃 USEFUL
8
#2 Cont’d Find the exact values of sin, cos, and tan of 3𝜋 8
cos 3𝜋 4 =− cos 𝜃 >0 sin 𝜃 >0 sin 3𝜋 8 = sin 3𝜋 4 2 sin 𝜃 2 =± 1− cos 𝜃 2 = 1− − = = =
9
#2 Cont’d Find the exact values of sin, cos, and tan of 3𝜋 8
cos 3𝜋 4 =− cos 𝜃 >0 sin 𝜃 >0 = 1+ − cos 3𝜋 8 = cos 3𝜋 4 2 cos 𝜃 2 =± 1+ cos 𝜃 2 = 2− = 2− 2 4 = 2−
10
#2 Cont’d Find the exact values of sin, cos, and tan of 3𝜋 8
= − tan 3𝜋 8 = sin 3𝜋 8 cos 3𝜋 8 = − 2 ∙ 2− − 2 Multiply by denominator to get rid of big radical = 4−2 2− 2 = − 2 ∙ = 2 (2+ 2 ) 4−2 Multiply by conjugate to get rid of radical = = 2 +1
11
Ticket Out the Door Determine the exact values of the sine, cosine, and tangent of 𝑜
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.