Presentation is loading. Please wait.

Presentation is loading. Please wait.

B. Wilkinson/Clayton Ferner Seeds.ppt Modification date August

Similar presentations


Presentation on theme: "B. Wilkinson/Clayton Ferner Seeds.ppt Modification date August"— Presentation transcript:

1 B. Wilkinson/Clayton Ferner Seeds.ppt Modification date August 15 2014
Seeds Framework B. Wilkinson/Clayton Ferner Seeds.ppt Modification date August

2 “Seeds” Parallel Grid Application Framework
Some Key Features Pattern-programming Java user interface (C++ version developed) Self-deploys on computers, clusters, and geographically distributed computers. Three development layers, basic, advanced and expert, exposing increasing detail. We will use the basic level.

3 Seeds programming Workpool
Several standard patterns implemented including Workpool, Pipeline, All-to-all, Stencil, etc. Workpool Three phases: Master diffuses data to slaves Slaves performs computations Master gathers results for slaves Programmer specifies what master and slave do, and what is transferred between them, without implementing low level message passing routines. Slaves Master Workpool Slaves Compute Gather Diffuse Master Message passing done by Seeds

4 User Program “Module” class Two classes: Diffuse
“Module” class – diffuse, compute and gather methods and any other methods associated with application Run module “Bootstrap” class - creates an instance of the module class and starts the framework and executes module pattern. Diffuse Compute Gather Run module Bootstrap class

5 Seeds Workpool DiffuseData, Compute, and GatherData Methods
Master GatherData DiffuseData Private variable total (answer) DataMap d Returns d to each slave Data argument data Compute Data argument data DataMap input Slaves DataMap output DiffuseData, Compute and GatherData methods start with a capital letter although method names should not! d created in DiffuseData. output created in Compute

6 Data and DataMap classes
For implementation convenience two classes: Data class used to pass data between master and slaves (Uses a “segment” number to keep track of packets, see later). DataMap class inside compute method DataMap is a subclass of Data and so allows casting. DataMap methods put (String, data) – puts data into DataMap identified by string get (String) – gets stored data identified by string DataMap extends Java HashMap which implement a Map, see

7 Module class Data cast into a DataMap
segment used by Seeds to keep track of where to put results public Data DiffuseData (int segment) { DataMap<String, Object> d =new DataMap<String, Object>(); input Data = …. d.put(“name_of_inputdata", inputData); return d; } public Data Compute (Data data) { DataMap<String, Object> input = (DataMap<String,Object>)data; //data produced by DiffuseData() DataMap<String, Object> output = new DataMap<String, Object>(); //output returned to gatherdata inputData = input.get(“name_of_inputdata”); … // computation output.put("name_of _results", results); // to return to GatherData() return output; public void GatherData (int segment, Data dat) { DataMap<String,Object> out = (DataMap<String,Object>) dat; outdata = out.get (“name_of_results”); result … // aggregate outdata from all the worker nodes. result a private variable Data cast into a DataMap By framework GatherData gives back Data object with a segment number By framework

8 Question Will a class field modified in the DiffuseData or GatherData methods be updated with the same values as in the Compute method? Answer NO. The two methods are running on different JVMs (and different nodes)

9 Seeds Implementations
Three Java versions developed: Full JXTA P2P version intended for a cluster and a fully distributed system (grid system). Requires an Internet connection. JXTA P2P version not needing an external network but otherwise identical, suitable for testing on a single computer. Multicore (thread-based) version specifically a single multicore computer. Multicore version much faster execution on a single computer. Only difference is minor coding changes in bootstrap class.

10 Bootstrap class JXTA P2P version
package edu.uncc.grid.example.workpool; import java.io.IOException; import net.jxta.pipe.PipeID; import edu.uncc.grid.pgaf.Anchor; import edu.uncc.grid.pgaf.Operand; import edu.uncc.grid.pgaf.Seeds; import edu.uncc.grid.pgaf.p2p.Types; public class RunMonteCarloPiModule { public static void main(String[] args) { try { MyModule pi = new MyModule(); Seeds.start( "/path/to/seeds/seed/folder" , false); PipeID id = Seeds.startPattern(new Operand( (String[])null, new Anchor("hostname", Types.DataFlowRoll.SINK_SOURCE), pi )); System.out.println(id.toString() ); Seeds.waitOnPattern(id); Seeds.stop(); System.out.println( "The result is: " + pi.getPi() ) ; } catch (SecurityException e) { e.printStackTrace(); } catch (IOException e) { } catch (Exception e) { } This code deploys framework and starts execution of pattern Different patterns have similar code

11 Bootstrap class Multicore version
Much faster on a multicore platform Thread based Bootstrap class does not need to start and stop JXTA P2P. Seeds.start() and Seeds.stop() not needed. Otherwise user code similar. public class RunMonteCarloPiModule { public static void main(String[] args) { try { MyModule pi=new MyModule(); Thread id = Seeds.startPatternMulticore( new Operand( (String[])null, new Anchor( args[0], Types.DataFlowRole.SINK_SOURCE), pi ),4); id.join(); System.out.println( "The result is: " + pi.getPi() ) ; } catch (SecurityException e) { e.printStackTrace(); } catch (IOException e) { } catch (Exception e) { }

12 Measuring Time Can instrument code in the bootstrap class:
public class RunMyModule { public static void main (String [] args ) { try{ long start = System.currentTimeMillis(); MyModule m = new MyModule(); Seeds.start(. ); PipeID id = ( … ); Seeds.waitOnPattern(id); Seeds.stop(); long stop = System.currentTimeMillis(); double time = (double) (stop - start) / ; System.out.println(“Execution time = " + time); } catch (SecurityException e) { …

13 Compiling/executing Can be done on the command line (ant script provided) or through an IDE (Eclipse)

14 Examples of applications using Workpool Pattern
Computing p by the Monte Carlo method

15 Monte Carlo Methods A so-called “embarrassingly parallel” computation as it decomposes into obviously independent tasks that can be done in parallel without any task communications during the computation. Monte Carlo methods use random selections. For parallelizing Monte Carlo code, must address best way to generate random numbers in parallel.

16 Calculate p using the Monte Carlo method
Circle formed within a 2 x 2 square. Ratio of area of circle to square given by: Points within square chosen randomly. Score kept of how many points happen to lie within circle. Fraction of points within circle will be , given sufficient number of randomly selected samples.

17 Typically only one quadrant used.
One quadrant can be described by integral: Random pairs of numbers, (xr,yr) generated, each between 0 and 1. Counted as in circle if

18 Alternative (better) Monte Carlo Method
(Not used here) Generate random values of x to compute f(x) Sum values of f(x): where xr are randomly generated values of x between x1 and x2. Monte Carlo method very useful if the function cannot be integrated numerically (maybe having a large number of variables) 3.19

19 Workpool implementation
Slaves Compute Return number of 1000 random points inside arc of circle inside Send by starting seed for random sequence to each slave seed Aggregate answers DiffuseData GatherData Master Compute node Source/sink

20 Seeds Monte Carlo code MonteCarloPiModule.java
DiffuseData Method (Required to be implemented) public Data DiffuseData (int segment) { DataMap<String, Object> d =new DataMap<String, Object>(); d.put("seed", R.nextLong()); return d; // returns a random seed for each job unit }

21 (Required to be implemented)
Compute Method (Required to be implemented) public Data Compute (Data data) { DataMap<String, Object> input = (DataMap<String,Object>)data; DataMap<String, Object> output = new DataMap<String, Object>(); Long seed = (Long) input.get("seed"); // get random seed Random r = new Random(); r.setSeed(seed); Long inside = 0L; for (int i = 0; i < DoubleDataSize ; i++) { double x = r.nextDouble(); double y = r.nextDouble(); double dist = x * x + y * y; if (dist <= 1.0) { ++inside; } output.put("inside", inside); // to return to GatherData() return output;

22 GatherData Method (Required to be implemented)
public void GatherData (int segment, Data dat) { DataMap<String,Object> out = (DataMap<String,Object>) dat; Long inside = (Long) out.get("inside"); total += inside; // aggregate answer from all the worker nodes. }

23 getDataCount Method (Required to be implemented)
public int getDataCount() { return random_samples; } Set number of data “envelopes” sent from master by DiffuseData to slaves, in this case number of “seeds”. (Number of physical slaves processors might be different.) Initialized in: initializeModule(String[ ] args) { random_samples = 3000; }

24 Method to compute p result (used in bootstrap module)
public double getPi() { // returns value of pi based on all workers double pi = (total / (random_samples * DoubleDataSize)) * 4; return pi; }

25 Complete module class MonteCarloPiModule
public Data Compute (Data data) { // input gets the data produced by DiffuseData() DataMap<String, Object> input = (DataMap<String,Object>)data; DataMap<String, Object> output = new DataMap<String, Object>(); Long seed = (Long) input.get("seed"); // get random seed Random r = new Random(); r.setSeed(seed); Long inside = 0L; for (int i = 0; i < DoubleDataSize ; i++) { double x = r.nextDouble(); double y = r.nextDouble(); double dist = x * x + y * y; if (dist <= 1.0) { ++inside; } output.put("inside", inside);// store partial answer to return to GatherData() return output; // output will emit partial answers done by this method public Data DiffuseData (int segment) { DataMap<String, Object> d =new DataMap<String, Object>(); d.put("seed", R.nextLong()); return d; // returns a random seed for each job unit public void GatherData (int segment, Data dat) { DataMap<String,Object> out = (DataMap<String,Object>) dat; Long inside = (Long) out.get("inside"); total += inside; // aggregate answer from all the worker nodes. public double getPi() { // returns value of pi based on the job done by all the workers double pi = (total / (random_samples * DoubleDataSize)) * 4; return pi; public int getDataCount() { return random_samples; Complete module class MonteCarloPiModule package edu.uncc.grid.example.workpool; import java.util.Random; import java.util.logging.Level; import edu.uncc.grid.pgaf.datamodules.Data; import edu.uncc.grid.pgaf.datamodules.DataMap; import edu.uncc.grid.pgaf.interfaces.basic.Workpool; import edu.uncc.grid.pgaf.p2p.Node; public class MonteCarloPiModule extends Workpool { private static final long serialVersionUID = 1L; private static final int DoubleDataSize = 1000; double total; int random_samples; Random R; public MonteCarloPiModule() { R = new Random(); } public void initializeModule(String[] args) { total = 0; Node.getLog().setLevel(Level.WARNING); // reduce verbosity for logging random_samples = 3000; // set # of random samples

26 Bootstrap class (Multicore version)
... public class RunMonteCarloPiModule { public static void main(String[] args) { try { MonteCarloPiModule pi = new MonteCarloPiModule(); Seeds.start( "/path/to/seeds/seed/folder" , false); PipeID id = Seeds.startPattern(new Operand( (String[])null, new Anchor("hostname", Types.DataFlowRoll.SINK_SOURCE),pi)); System.out.println(id.toString() ); Seeds.waitOnPattern(id); Seeds.stop(); System.out.println( "The result is: " + pi.getPi() ) ; } catch (SecurityException e) { ...

27 Discussion Does anyone see a potential flaw in the code (clue: random number generation)

28 Workpool pattern 2. Matrix addition and multiplication
Matrix addition and multiplication very easy to parallelize as each result value independent of other result values.

29 Matrix Addition, C = A + B Add corresponding elements of each matrix to form elements of result matrix. Given elements of A as ai,j and elements of B as bi,j, each element of C computed as: Add A B C Easy to parallelize – each processor computes one C element or group of C elements

30 Workpool Implementation
Slave computation Adds one row of A with one row of B to create one row of C (rather than each slave adding single elements) Add A B C Note generally we want the Computation/Communication ratio as large as possible. Here it is O(1)!

31 Workpool implementation
Slaves (one for each row) Return one row of C C A B Send one row of A and B to slave Master Compute node Following example 3 x 3 arrays and 3 slaves Source/sink

32 MatrixAddModule.java Continues on several sides
package edu.uncc.grid.example.workpool; import … public class MatrixAddModule extends Workpool { private static final long serialVersionUID = 1L; int[][] matrixA; int[][] matrixB; int[][] matrixC; public MatrixAddModule() { matrixC = new int[3][3]; } public void initMatrices(){ matrixA = new int[][]{{2,5,8},{3,4,9},{1,5,2}}; matrixB = new int[][]{{2,5,8},{3,4,9},{1,5,2}}; public int getDataCount() { return 3; public void initializeModule(String[] args) { Node.getLog().setLevel(Level.WARNING); MatrixAddModule.java Continues on several sides In this example matrices are 3 x 3 Some initial values Required method. Number of data objects (Slaves)

33 DataMap d returned are pairs of string key and associated array
DiffuseData method public Data DiffuseData(int segment) { int[] rowA = new int[3]; int[] rowB = new int[3]; DataMap<String, int[]> d =new DataMap<String, int[]>(); int k = segment; for (int i=0;i<3;i++) { rowA[i] = matrixA[k][i]; rowB[i] = matrixB[k][i]; } d.put("rowA",rowA); d.put("rowB",rowB); return d; DataMap d returned are pairs of string key and associated array segment variable used to select rows Copy one row of A and one row of B into rowA, rowB to be sent to slaves rowA and rowB put in d DataMap to send to slaves

34 Compute method public Data Compute(Data data) { int[] rowC = new int[3]; DataMap<String, int[]> input = (DataMap<String,int[]>)data; DataMap<String, int[]> output = new DataMap<String, int[]>(); int[] rowA = (int[]) input.get("rowA"); int[] rowB = (int[]) input.get("rowB"); for (int i=0;i<3;i++) { rowC[i] = rowA[i] + rowB[i]; } output.put("rowC",rowC); return output; Get two rows from data received Add rows Put result row into output with key to be sent back to master

35 GatherData method Note segment variable and Data from slave
public void GatherData(int segment, Data dat) { DataMap<String,int[]> out = (DataMap<String,int[]>) dat; int[] rowC = (int[]) out.get("rowC"); for (int i=0;i<3;i++) { matrixC[segment][i]= rowC[i]; } Get C row sent from slave Place row into result matrix Segment variable associated with Data used to choose correct row

36 Bootstrap class Multicore version
public class RunMonteCarloPiModule { public static void main(String[] args) { try { long start = System.currentTimeMillis(); MatrixAddModule m = new MatrixAddModule(); m.initMatrices(); Thread id = Seeds.startPatternMulticore( new Operand( (String[])null, new Anchor( args[0], Types.DataFlowRole.SINK_SOURCE),pi ),4); id.join(); long stop = System.currentTimeMillis(); double time = (double) (stop - start) / ; System.out.println("Execution time = " + time); m.printResult(); } catch …

37 Matrix Multiplication
Sequential code to compute A x B square (n x n matrices) for (i = 0; i < n; i++) // for each row of A for (j = 0; j < n; j++) { // for each column of B c[i][j] = 0; for (k = 0; k < n; k++) c[i][j] = c[i][j] + a[i][k] * b[k][j]; } Requires n3 multiplications and n3 additions. Sequential time complexity of O(n3). Very easy to parallelize as each result independent

38 Workpool implementation
With one slave computing one element of result: Slaves (one for each element of result) Return one element of C C A Send one row of A and one column of B to slave B Compute node Source/sink Master Following example 3 x 3 arrays and 9 slaves

39 MatrixAddModule.java Continues on several sides
package edu.uncc.grid.example.workpool; import … public class MatrixAddModule extends Workpool { private static final long serialVersionUID = 1L; int[][] matrixA; int[][] matrixB; int[][] matrixC; public MatrixAddModule() { matrixC = new int[3][3]; } public void initMatrices(){ matrixA = new int[][]{{2,5,8},{3,4,9},{1,5,2}}; matrixB = new int[][]{{2,5,8},{3,4,9},{1,5,2}}; public int getDataCount() { return 9; public void initializeModule(String[] args) { Node.getLog().setLevel(Level.WARNING); MatrixAddModule.java Continues on several sides In this example matrices are 3 x 3 Some initial values Required method. Number of data objects (Slaves)

40 DiffuseData method public Data DiffuseData(int segment) { int[] rowA = new int[3]; int[] colB = new int[3]; DataMap<String, int[]> d =new DataMap<String, int[]>(); int a=segment/3,b = segment%3 ; for (int i=0;i<3;i++) { rowA[i] = matrixA[a][i]; colB[i] = matrixB[i][b]; } d.put("rowA",rowA); d.put(“colB",colB); return d; DataMap d returned are pairs of string key and associated array segment variable used to select element in A and B Copy one row of A and one column of B into rowA, colB to be sent to slaves rowA and colB put in d DataMap to send to slaves

41 Note on mapping rows and columns to segments
Arow Bcol segment segment segment segment segment segment segment segment segment 8 2 2 int Arow =segment/3; Int Bcol = segment%3;

42 Compute method public Data Compute(Data data) { int[] rowC = new int[3]; DataMap<String, int[]> input = (DataMap<String,int[]>)data; DataMap<String, Integer> output = new DataMap<String, Integer>(); int[] rowA = (int[]) input.get("rowA"); int[] colB = (int[]) input.get(“colB"); int out = 0; for (int i=0;i<3;i++) { out += rowA[i]*colB[i]; } output.put(“out",out); return output; Get two rows from data received Matrix multiplication, one result Put result into output with key to be sent back to master

43 GatherData method Note segment variable and Data from slave
public void GatherData(int segment, Data dat) { DataMap<String,Integer> out = (DataMap<String,Integer>) dat; int answer = out.get("out"); int a=segment/3, b=segment%3; matrixC[a][b]= answer; } Get result sent from slave* Place element into result matrix Segment variable associated with Data used to choose correct row * Cast from Integer to int not necessary

44 Workpool Numerical integration
Slaves (one for each partition) Master Compute node Source/sink Area Start End Send start and end for partition to slave Return computed area under curve F(x) x

45 Questions


Download ppt "B. Wilkinson/Clayton Ferner Seeds.ppt Modification date August"

Similar presentations


Ads by Google