Download presentation
Presentation is loading. Please wait.
1
Ffwythiannau Cyfansawdd a Gwrthdro
Composite and Inverse Functions @mathemateg /adolygumathemateg
2
Ffwythiannau Cyfansawdd a Gwrthdro Composite and Inverse Functions
Mae ffwythiant π yn mapio elfennau oβr set π (y parth) i elfennau oβr set π (yr amrediad). Maeβr mewnbwn π₯βπ yn mapio i un (a dim ond un) allbwn π¦βπ. The function π maps elements of the set π (the domain) to elements of the set π (the range). The input π₯βπ maps to one (and only one) output π¦βπ. Ar gyfer π π₯ = π₯ 2 β7, y parth yw (ββ,β) aβr amrediad yw [β7,β). For π π₯ = π₯ 2 β7, the domain is (ββ,β) and the range is [β7,β). Ar gyfer π π₯ = 1 π₯β3 , y parth yw [3,β) aβr amrediad yw 0,β . For π π₯ = 1 π₯β3 , the domain is [3,β) and the range is (0,β).
3
Ffwythiannau Cyfansawdd a Gwrthdro Composite and Inverse Functions
Mewn ffwythiant un-i-un, mae pob elfen oβr amrediad yn cyfateb i union un elfen oβr parth. In a one-to-one function, each element of the range corresponds to exactly one element of the domain. Enghraifft / Example: π π₯ =2π₯+1. Mewn ffwythiant llawer-i-un, mae pob elfen oβr amrediad yn gallu cyfateb i mwy nag un elfen oβr parth. In a many-to-one function, each element of the range can correspond to more than one element of the domain. Enghraifft / Example: π π₯ = π₯ 2 .
4
Ffwythiannau Cyfansawdd a Gwrthdro Composite and Inverse Functions
Mae ffwythiant cyfansawdd yn cyfuno dau neu fwy o ffwythiannau. A composite function combines two or more functions. O gael ffwythiannau π(π₯) a π π₯ , maeβr ffwythiant cyfansawdd ππ(π₯) yn golygu βgweithredu π ar ganlyniadau π(π₯)β. Maeβr ffwythiant cyfansawdd ππ(π₯) yn golygu βgweithredu π ar ganlyniadau π(π₯)β. Given two functions π(π₯) and π(π₯), the composite function ππ(π₯) means βapply π to the results of π(π₯)β. The composite function ππ(π₯) means βapply π to the results of π(π₯)β. Maeβr drefn yn bwysig. Nid yw ππ(π₯) o angenrheidrwydd yr un peth Γ’ ππ(π₯). The order is important. ππ(π₯) is not necessarily the same as ππ(π₯). Ar gyfer ππ(π₯), mae amrediad π(π₯) yn helpu penderfynu beth yw parth ππ(π₯). Parth ππ(π₯) yw croestoriad amrediad π(π₯) efo parth π(π₯). For ππ(π₯), the range of π(π₯) helps to decide what is the domain of ππ(π₯). The domain of ππ(π₯) is the intersection of the range of π(π₯) with the domain of π(π₯).
5
Ffwythiannau Cyfansawdd a Gwrthdro Composite and Inverse Functions
π(π₯) π(π₯) ππ(π₯) Ffwythiannau Cyfansawdd a Gwrthdro Composite and Inverse Functions Enghraifft / Example: π π₯ = π₯+2 , π π₯ = π₯ 2 +3 ππ π₯ = π(π₯)+2 ππ π₯ = π₯ ππ π₯ = π₯ 2 +5 Ffwythiant / Function Parth / Domain Amrediad / Range π(π₯) [β2, β) [0, β) π(π₯) (ββ, β) [3,β) ππ(π₯) [3, β) [ 14 , β)
6
Ffwythiannau Cyfansawdd a Gwrthdro Composite and Inverse Functions
π(π₯) π(π₯) ππ(π₯) Ffwythiannau Cyfansawdd a Gwrthdro Composite and Inverse Functions Enghraifft / Example: π π₯ = π₯+2 , π π₯ = π₯ 2 β3 ππ π₯ = π(π₯)+2 ππ π₯ = π₯ 2 β3 +2 ππ π₯ = π₯ 2 β1 Ffwythiant / Function Parth / Domain Amrediad / Range π(π₯) [β2, β) [0, β) π(π₯) (ββ, β) [β3,β) ππ(π₯) [β2, β1]βͺ[1, β) ππ(π₯) heb ei ddiffinio yn y parth / not defined in the domain (β1, 1).
7
Ffwythiannau Cyfansawdd a Gwrthdro Composite and Inverse Functions
O gael ffwythiant π(π₯), maeβr ffwythiant gwrthdro π β1 (π₯) yn gwrthdroi effaith y ffwythiant π(π₯). Given the function π(π₯), the inverse function π β1 (π₯) reverses the effect of the original function π(π₯). Maeβn bosib darganfod y ffwythiant gwrthdro trwy newid testun y ffwythiant π(π₯) i fod yn π₯. We can find the inverse function by changing the subject of π(π₯) to be π₯. Enghraifft / Example: π π₯ =4π₯+3 4π₯+3=π(π₯) [Cyfnewid ochrau / Swap sides] 4π₯=π π₯ β3 [Tynnu 3 / Subtract 3] π₯= π π₯ β [Rhannu efo 4 / Divide by 4] Felly / Therefore π β1 π₯ = π₯β3 4 . π¦=4π₯+3 π¦=π₯ π¦= π₯β3 4
8
Ffwythiannau Cyfansawdd a Gwrthdro Composite and Inverse Functions
Maeβr graff ar gyfer π β1 (π₯) yn adlewyrchiad oβr graff ar gyfer π(π₯) yn y llinell π¦=π₯. The graph of π β1 (π₯) is a reflection of the graph of π(π₯) in the line π¦=π₯. Parth π β1 (π₯) yw amrediad π(π₯), a pharth π(π₯) yw amrediad π β1 π₯ . The domain of π β1 (π₯) is the range of π(π₯), and the domain of π(π₯) is the range of π β1 (π₯). O gael eu gwrthdroi, mae ffwythiannau llawer-i-un yn troiβn berthnasau un-i-lawer. Felly, heb gwtogiβr parth, nid oes gan ffwythiannau llawer-i-un ffwythiant gwrthdro. When inverted, many-to-one functions become one-to-many relationships. Therefore, without curtailing the domain, many-to-one functions do not have an inverse function. Os yw ffwythiant efo ffwythiant gwrthdro, yna π π β1 π₯ = π β1 π π₯ =π₯. If a function has an inverse function, then π π β1 π₯ = π β1 π π₯ =π₯.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.