Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tutorial 7: General Random Variables 3

Similar presentations


Presentation on theme: "Tutorial 7: General Random Variables 3"β€” Presentation transcript:

1 Tutorial 7: General Random Variables 3
Yitong Meng March 13, 2017

2 Revise - Joint PDF Two continuous random variables 𝑋,π‘Œ satisfying
𝑃 𝑋,π‘Œ ∈𝐡 = (π‘₯,𝑦)∈𝐡 𝑓 𝑋,π‘Œ π‘₯,𝑦 𝑑π‘₯𝑑𝑦 for every subset 𝐡

3 Revise - Marginal Probability
𝑃 π‘‹βˆˆπ΄ =𝑃 π‘‹βˆˆπ΄, π‘Œβˆˆ βˆ’βˆž,∞ = 𝐴 βˆ’βˆž ∞ 𝑓 𝑋,π‘Œ π‘₯,𝑦 𝑑𝑦 𝑑π‘₯ The marginal PDF of 𝑋 is 𝑓 𝑋 π‘₯ = βˆ’βˆž ∞ 𝑓 𝑋,π‘Œ π‘₯,𝑦 𝑑𝑦

4 Example: Buffon’s Needle
A surface is ruled with parallel lines, which at distance 𝑑 from each other. Suppose we throw a needle of length 𝑙 randomly. What is the prob. that the needle will intersect one of the lines?

5 Example: Buffon’s Needle
Assume 𝑙<𝑑 so that the needle cannot intersect two lines simultaneously. 𝑋, the distance from the middle point of the needle and the nearest of the parallel lines πœ—, the acute angle formed by the needle and the lines

6 Example: Buffon’s Needle
We model (𝑋,πœ—) with a uniform joint PDF so that 𝑓 𝑋,πœ— π‘₯,πœƒ = 4 πœ‹π‘‘ , 𝑖𝑓 π‘₯∈ 0, 𝑑 2 π‘Žπ‘›π‘‘ πœƒβˆˆ[0, πœ‹ 2 ] 0, π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’

7 Example: Buffon’s Needle
The needle will intersect one of the lines if and only if 𝑋≀ 𝑙 2 sin πœ—

8 Example: Buffon’s Needle
So the probability of intersection is 𝑃 𝑋≀ 𝑙 2 sin πœ— = 𝑋≀ 𝑙 2 sin πœƒ 𝑓 𝑋,πœ— π‘₯,πœƒ 𝑑π‘₯π‘‘πœƒ = 4 πœ‹π‘‘ 0 πœ‹/ 𝑙 2 sin πœƒ 𝑑π‘₯π‘‘πœƒ = 4 πœ‹π‘‘ 0 πœ‹/2 𝑙 2 sin πœƒ π‘‘πœƒ = 2𝑙 πœ‹π‘‘ βˆ’ cos πœƒ πœ‹ = 2𝑙 πœ‹π‘‘

9 Example: Multivariate Gaussian
Let π‘‹βˆˆ 𝑅 𝑛 be a n-dimensional normal random variable. The PDF of 𝑋 is then 𝑓 𝑋 π‘₯ = πœ‹ 𝑛 2 Ξ£ βˆ’ π‘₯βˆ’πœ‡ 𝑇 Ξ£ βˆ’1 π‘₯βˆ’πœ‡

10 Example: Multivariate Gaussian
The mean and variance 𝐸 𝑋 =πœ‡ 𝑉 𝑋 =Ξ£ (Recall) 𝑓 𝑋 π‘₯ = πœ‹ 𝑛 2 Ξ£ βˆ’ π‘₯βˆ’πœ‡ 𝑇 Ξ£ βˆ’1 π‘₯βˆ’πœ‡

11 Example: Multivariate Gaussian
To draw: suppose we have 𝑍 𝑖 ~β„•(0,1) i.i.d and 𝑍 = 𝑍 1 ,…, 𝑍 𝑛 We have πœ‡+𝐴𝑍~β„•(πœ‡,Ξ£) where 𝐴 𝐴 𝑇 =Ξ£.

12 Example: Multivariate Gaussian
Element-wise variance Ξ£ 𝑖𝑗 =πΆπ‘œπ‘£ 𝑋 𝑖 , 𝑋 𝑗 Degenerate case Ξ£ =π‘‘π‘–π‘Žπ‘”( 𝑣 1 , 𝑣 2 , …,𝑣 𝑛 )

13 Example: Multivariate Gaussian
Fact: in degenerate case, elements of 𝑋 are independent Proof: As the coefficient of π‘₯ 𝑖 π‘₯ 𝑗 is zero in π‘₯βˆ’πœ‡ 𝑇 π‘₯βˆ’πœ‡ 𝑇 Ξ£ βˆ’1 π‘₯βˆ’πœ‡ , the PDF can be decomposed into the product of π‘₯ 𝑖 part and π‘₯ 𝑗 part.

14 Example: Multivariate Gaussian
For conditional distribution: Gaussian variable condition on Gaussian variable is still Gaussian. We omit the proof.


Download ppt "Tutorial 7: General Random Variables 3"

Similar presentations


Ads by Google