Download presentation
Presentation is loading. Please wait.
Published byBertina O’Connor’ Modified over 6 years ago
1
Objectives Develop and apply the formulas for the area and circumference of a circle. Develop and apply the formula for the area of a regular polygon.
2
A circle is the locus of points in a plane that are a fixed distance from a point called the center of the circle. A circle is named by the symbol and its center. A has radius r = AB and diameter d = CD. The irrational number is defined as the ratio of the circumference C to the diameter d, or Solving for C gives the formula C = d. Also d = 2r, so C = 2r.
4
Example 1A: Finding Measurements of Circles
Find the area of K in terms of . A = r2 Area of a circle. Divide the diameter by 2 to find the radius, 3. A = (3)2 A = 9 in2 Simplify.
5
Example 1B: Finding Measurements of Circles
Find the radius of J if the circumference is (64x) m. C = 2r Circumference of a circle (64x) = 2r Substitute (65x + 14) for C. r = (32x) m Divide both sides by 2.
6
Example 1C: Finding Measurements of Circles
Find the circumference of M if the area is 25 x2 ft2 Step 1 Use the given area to solve for r. A = r2 Area of a circle 25x2 = r2 Substitute 25x2 for A. 25x2 = r2 Divide both sides by . Take the square root of both sides. 5x = r
7
Example 1C Continued Step 2 Use the value of r to find the circumference. C = 2r C = 2(5x) Substitute 5x for r. C = 10x ft Simplify.
8
Check It Out! Example 1 Find the area of A in terms of in which C = (4x – 6) m. A = r2 Area of a circle. Divide the diameter by 2 to find the radius, 2x – 3. A = (2x – 3)2 m A = (4x2 – 12x + 9) m2 Simplify.
9
Example 2: Cooking Application
A pizza-making kit contains three circular baking stones with diameters 24 cm, 36 cm, and 48 cm. Find the area of each stone. Round to the nearest tenth. 24 cm diameter 36 cm diameter 48 cm diameter A = (12)2 A = (18)2 A = (24)2 ≈ cm2 ≈ cm2 ≈ cm2
10
Check It Out! Example 2 A drum kit contains three drums with diameters of 10 in., 12 in., and 14 in. Find the circumference of each drum. 10 in. diameter in. diameter in. diameter C = d C = d C = d C = (10) C = (12) C = (14) C = 31.4 in. C = 37.7 in. C = 44.0 in.
12
The center of a regular polygon is equidistant from the vertices
The center of a regular polygon is equidistant from the vertices. The apothem is the distance from the center to a side. A central angle of a regular polygon has its vertex at the center, and its sides pass through consecutive vertices. Each central angle measure of a regular n-gon is
14
Example 3A: Finding the Area of a Regular Polygon
Find the area of regular heptagon with side length 2 ft to the nearest tenth. Step 1 Draw the heptagon. Draw an isosceles triangle with its vertex at the center of the heptagon. The central angle is . Draw a segment that bisects the central angle and the side of the polygon to form a right triangle.
15
Example 3A Continued Step 2 Use the tangent ratio to find the apothem. The tangent of an angle is opp. leg adj. leg Solve for a.
16
Example 3A Continued Step 3 Use the apothem and the given side length to find the area. Area of a regular polygon The perimeter is 2(7) = 14ft. Simplify. Round to the nearest tenth. A 14.5 ft2
17
Example 3B: Finding the Area of a Regular Polygon
Find the area of a regular dodecagon with side length 5 cm to the nearest tenth. Step 1 Draw the dodecagon. Draw an isosceles triangle with its vertex at the center of the dodecagon. The central angle is Draw a segment that bisects the central angle and the side of the polygon to form a right triangle.
18
Example 3B Continued Step 2 Use the tangent ratio to find the apothem. The tangent of an angle is opp. leg adj. leg Solve for a.
19
Example 3B Continued Step 3 Use the apothem and the given side length to find the area. Area of a regular polygon The perimeter is 5(12) = 60 ft. Simplify. Round to the nearest tenth. A cm2
20
Check It Out! Example 3 Find the area of a regular octagon with a side length of 4 cm. Step 1 Draw the octagon. Draw an isosceles triangle with its vertex at the center of the octagon. The central angle is Draw a segment that bisects the central angle and the side of the polygon to form a right triangle.
21
Check It Out! Example 3 Continued
Step 2 Use the tangent ratio to find the apothem The tangent of an angle is opp. leg adj. leg Solve for a.
22
Check It Out! Example 3 Continued
Step 3 Use the apothem and the given side length to find the area. Area of a regular polygon The perimeter is 4(8) = 32cm. Simplify. Round to the nearest tenth. A ≈ 77.3 cm2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.