Download presentation
Presentation is loading. Please wait.
1
Function Notation Transformations
2
π π₯ βF of x" π π₯ is a substitute for βy.β π π₯ represents the output when using x as the input. The function described by Ζ(x) = 5x + 3 is the same as the function described by y = 5x + 3.
3
Evaluating Functions Just plugging it in π π₯ =5π₯+3 π 3 =
Find the following outputs for each function. π π₯ =5π₯+3 Just plugging it in π 3 = 5 3 +3=15+3=18 π 0 = 5 0 +3=0+3=3 π β5 = 5 β5 +3=β25+3=β22
4
Transforming π(π₯) π π₯ +π Vertical Shift: Up(+) or down(-) k units
π π₯+π Horizontal Shift: Left(+) or right(-) k units ππ π₯ Stretch βπ π₯ Flip
5
Example Function x y -2 4 -1 1 2 x y -2 9 -1 6 5 1 2 π π₯ = π₯ 2 π π₯ +5=
π₯ 2 +5 (Standard Function) (Vertical Shift) x y -2 4 -1 1 2 x y -2 9 -1 6 5 1 2
6
Example Function x y -7 4 -6 1 -5 -4 -3 x y -2 20 -1 5 1 2 π π₯+5 =
(π₯+5) 2 5π π₯ = 5π₯ 2 (Horizontal Shift) (Stretch) x y -7 4 -6 1 -5 -4 -3 x y -2 20 -1 5 1 2
7
Example Function 2 x y -2 2 -1 1 x y -2 -4 -1 1 2 4 π π₯ =|π₯| β2π π₯ =
β2|π₯| Standard Function Stretch and Flip x y -2 2 -1 1 x y -2 -4 -1 1 2 4
8
Example Function 2 x y 1 2 3 4 5 x y -2 -1 -3 1 2 π π₯β3 = |π₯β3|
π π₯ β3= π₯ β3 Horizontal Shift Vertical Shift x y 1 2 3 4 5 x y -2 -1 -3 1 2
9
Multiple Shifts x y 1 2 1.4 3 1.7 4 x y -3 -5 -2 -4 -1 -3.6 -3.3 1
π₯+3 β5 π π₯ = π₯ π π₯+3 β5= Standard Function Horizontal and Vertical Shifts x y 1 2 1.4 3 1.7 4 x y -3 -5 -2 -4 -1 -3.6 -3.3 1
10
Multiple Shifts x y 2 1 -3 -5.1 3 -6.7 4 -8 β5π π₯ +2= β5 π₯ +2
β5 π₯ +2 Stretch and Vertical Shift x y 2 1 -3 -5.1 3 -6.7 4 -8
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.